C O M M U N I C A T I O N S
Table 2. Ag-Catalyzed Enantioselective Aldol Additions to
R-Ketoesters
We have thus identified a chiral amino acid-based ligand that in
combination with AgF2 promotes efficient and enantioselective
Mukaiyama aldol additions to R-ketoesters. The catalytic process
is effective with a range of substrates, particularly, those that bear
sterically hindered alkyl substituents; the method is complementary,
in terms of substrate range, to related catalytic enantioselective
procedures.6-8 Investigations directed toward outlining the mecha-
nistic details13 of the catalytic protocol are in progress.
Acknowledgment. This paper is dedicated to Professor K. C.
Nicolaou on the occasion of his 60th birthday. Financial support
was provided by the NIH (GM-57212).
Supporting Information Available: Experimental procedures and
spectral and analytical data for all compounds (PDF). This material is
temp
C)
time
(h)
yield
(%)a
ee
entry
G
R
(
°
(%)b
1
2c
3
4
5
6
7
8
9
(CH2)2Ph
(CH2)2CO2Me
CH2 i-Pr
i-Pr
Ph
Ph
Ph
-40
-30
-30
-30
-15
-40
-30
-30
-40
-40
-30
-30
48
24
24
24
48
48
24
24
48
48
24
48
92
95
95
93
61
>98
98
97
90
86
92
87
95
92
88
95
90
96
90
60
72
Ph
i-Pr
i-Pr
Cy
Cy
t-Bu
Me
Ph
Me
Ph
Ph
Ph
Ph
cyclopropyl
H2CdCH(Me)
Ph
10
11
12
98
93
95
2-thienyl
a With 1.2 equiv of enolsilane; >98% conversion; isolated yields.
b Determined by chiral GLC or HPLC analysis (see the Supporting
Information for details). c The corresponding R-ketomethylester was used.
References
(1) (a) Kruger, C. A.; Kuntz, K. W.; Dzierba, C. D.; Wirschun, W. G.;
Gleason, J. D.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 1999,
121, 4284-4285. (b) Porter, J. R.; Traverse, J. F.; Hoveyda, A. H.;
Snapper, M. L. J. Am. Chem. Soc. 2001, 123, 984-985. (c) Josephsohn,
N. S.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126,
3734-3735.
(2) (a) Deng, H.; Isler, M. P.; Snapper, M. L.; Hoveyda, A. H. Angew. Chem.,
Int. Ed. 2002, 1009-1012. (b) Wieland, L. C.; Deng, H.; Snapper, M. L.;
Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 15453-15456.
(3) (a) Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2001,
123, 755-756. (b) Luchaco-Cullis, C. A.; Hoveyda, A. H. J. Am. Chem.
Soc. 2002, 124, 8192-8193. (c) Murphy, K. E.; Hoveyda, A. H. J. Am.
Chem. Soc. 2003, 125, 4690-4691. For an overview, see: (d) Hird, A.
W.; Kacprzynski, M. A.; Hoveyda, A. H. Chem. Commun. 2004, 1779-
1785.
(4) (a) Kacprzynski, M. A.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126,
10676-10681. (b) Wu, J.; Mampreian, D. A.; Hoveyda, A. H. J. Am.
Chem. Soc. 2005, 127, 4584-4585. (c) Hird, A. W.; Hoveyda, A. H. J.
Am. Chem. Soc. 2005, 127, 14988-14989.
(5) For reviews on catalytic enantioselective aldol reactions, see: Modern
Aldol Reactions; Mahrwald, R., Ed.; Wiley-VCH: Weinheim, Germany,
2004.
(6) (a) Evans, D. A.; Burgey, C. S.; Kozlowski, M. C.; Tregay, S. W. J. Am.
Chem. Soc. 1999, 121, 686-699 and references therein. See also: (b)
van Lingen, H. L.; van de Mortel, J. K. W.; Hekking, K. F. W.; van Delft,
F. L.; Sonke, T.; Rutjes, F. P. J. T. Eur. J. Org. Chem. 2003, 317-324.
(7) Le, J. C.-D.; Pagenkopf, B. L. Org. Lett. 2004, 6, 4097-4099.
(8) (a) Langner, M.; Bolm, C. Angew. Chem., Int. Ed. 2004, 43, 5984-5987.
(b) Langner, M.; Remy, P.; Bolm, C. Chem.sEur. J. 2005, 11, 6254-
6256.
(9) For Ag-catalyzed enantioselective aldol reactions of aldehydes, see: (a)
Yanagisawa, A.; Matsumoto, Y.; Nakashima, K.; Asakawa, K.; Yamamoto,
H. J. Am. Chem. Soc. 1997, 119, 9319-9320. For addition to aldimines,
see ref 1c.
(10) Cole, B. M.; Shimizu, K. D.; Kruger, C. A.; Harrity, J. P.; Snapper, M.
L.; Hoveyda, A. H. Angew. Chem., Int. Ed. Engl. 1996, 35, 1668-1671.
(11) For Ag(I)-catalyzed enantioselective additions to aldimines (AgOAc and
amino acid-based phosphines), see: Josephsohn, N. S.; Snapper, M. L.;
Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 4018-4019.
(12) At lower temperatures, increased reactivity is observed with THF as solvent
(e.g., 42% conv in CH2Cl2 for entry 10).
with sterically hindered substrates (entries 4-10; 88-96% ee with
those bearing R-branched alkyl and alkenyl groups). Reactions of
aryl-substituted R-ketoesters proceed efficiently but with lower
selectivity (entries 11-12); however, these are the best selectivities
reported to date. (2) Enolsilanes derived from 3,3-dimethyl-2-
butanone (entry 5) and acetone (entries 6 and 8) can be used;
sterically hindered enolsilanes require elevated temperature (-15
°C) to proceed to >98% conversion. (3) Higher enantioselectivities
can be obtained at -40 °C (vs -30 °C), although longer reaction
times are needed (48 vs 24 h). For example, the process in entry
10 (Table 2) affords the desired tertiary alcohol in 91% ee (85%
yield) at -30 °C (24 h). (4) There is <2% conjugate addition
product formed with the R,â-unsaturated substrate in entry 10.14
(5) Optically enriched products bearing a suitably positioned
carboxylic ester (cf. entry 2, Table 2) can be converted to the
derived lactone simply by the use of acidic workup conditions; the
example in eq 1 is illustrative. (6) Ag-catalyzed reactions were set
up in air on a benchtop; the solution was purged with N2 and the
vessel sealed. Reactions can be carried out exposed to air and in
commercial grade undistilled THF (eq 2). (7) Although transforma-
tions in Table 2 were run with 10 mol % catalyst, enantioselective
additions proceed to >98% conversion, in high yield and enantio-
selectivity with 1 mol % catalyst loading (even when the solution
is exposed to air); the example in eq 2 is illustrative.15
(13) Preliminary studies indicate that AgF2 is reduced by enolsilanes. For a
similar reduction of Ag(I) to Ag(0) by an enolsilane, see: Ito, Y.; Konoike,
T.; Saegusa, T. J. Am. Chem. Soc. 1975, 97, 649-651.
(14) For examples of Cu(II)-catalyzed asymmetric conjugate additions of
enolsilanes to unsaturated carbonyls, see: Johnson, J. S.; Evans, D. A.
Acc. Chem. Res. 2000, 33, 325-335 and references therein.
(15) When reactions are performed at >50 mg scale, addition of 1 equiv of
MeOH is required for complete conversion. For example, the reaction in
eq 2, with 250 mg of R-ketoester, proceeds to 33% conversion (10 mol
% of 5d, -30 °C, 24 h) but to >98% conversion in the presence of 1
equiv of MeOH. Presumably, on small scale, there is sufficient moisture
present to ensure high conversion. Mechanistic details regarding the
importance of a proton source are under investigation and will be reported
in due course.
The catalytic process can be carried out with Danishefsky’s diene
(eq 3).11 Reactions proceed with R-ketoesters that bear sterically
hindered alkyl substituents with significantly higher enantioselec-
tivity than that previously reported.16 In contrast to Cu(II)-catalyzed
methods,17 the Ag-catalyzed reactions are run under operationally
simple conditions.
(16) Yao, S.; Johannsen, M.; Audrain, H.; Hazell, R. G.; Jorgensen, K. A. J.
Am. Chem. Soc. 1998, 120, 8599-8605.
(17) For an overview of related catalytic enantioselective cycloadditions to
ketones, see: Jorgensen, K. A. Eur. J. Org. Chem. 2004, 2093-2102.
JA061166O
9
J. AM. CHEM. SOC. VOL. 128, NO. 20, 2006 6533