Instruments
were synthsized by palladium-catalyzed Suzuki cross-coupling
reactions.
The NMR spectra were collected on a Varian Mercury Plus
400 spectrometer with tetramethylsilane as the internal stan-
dard. Molecular masses were determined by laser desorption/
ionization time-of-flight mass spectrometry (MALDI-TOF/
MASS). UV-Vis spectra were recorded on a Shimadzu 3150
PC spectrophotometer. The concentration of the oligomer
solution was adjusted to B0.001 mmol Lꢁ1. Fluorescence
measurement was carried out on a Shimadzu RF-5301 PC
spectrofluorophotometer with a xenon lamp as a light source.
Thermogravimetric analysis (TGA) was performed on a Shi-
madzu thermogravimetry and differential thermal analysis
DTG-60H at a heating rate of 10 1C minꢁ1 under N2.
Elemental microanalyses were carried out on a Vario EL III
CHNOS Elementar analyzer. Cyclic voltammetry (CV) was
performed at a scanning rate of 200 mV sꢁ1 on an AUTO-
LAB.PGSTAT30 potentiostat/galvanostat system (Eco-
chemie, Netherlands), which was equipped with a three-elec-
trode cell. Pt wires were used as the counter electrode and the
working electrode, and Ag/Ag1 was used as a reference
electrode. 0.1 mol Lꢁ1 tetrabutylammonium hexafluoro-
phosphate (n-Bu4NPF6) was used as a supporting electrolyte.
The reduction and oxidation behavior of the oligomers were
measured in solutions of THF and CH2Cl2 (1 ꢂ 10ꢁ3 mol
Acknowledgements
This work was financially supported by the National Natural
Science Foundation of China under Grants 60325412,
90406021, and 50428303, the Shanghai Commission of Science
and Technology under Grants 03DZ11016 and 04XD14002,
and the Shanghai Commission of Education under Grant
2003SG03.
References
1 C. Bosshard, K. Sutter, P. Pretre, J. Hulliger, M. Florsheimer, P.
Kaatz and P. Gunter, Organic Nonlinear Optical Materials,
Gordon and Breach, Basel, 1995.
2 (a) A. Kraft, A. C. Grimsdale and A. B. Holmes, Angew. Chem.,
Int. Ed., 1998, 37, 402–428; (b) A. Rajca, Chem. Rev., 1994, 94, 871.
3 W. L. Yu, H. Meng, J. Pei, W. Huang, Y. F. Li and A. J. Heeger,
Macromolecules, 1998, 31, 4838.
4 Z. K. Chen, H. Meng, Y. H. Lai and W. Huang, Macromolecules,
1999, 32, 4351.
5 (a) J. N. Wilson, P. M. Windscheif, U. Evans, M. L. Myrick and U.
H. F. Bunz, Macromolecules, 2002, 35, 8681; (b) J. N. Wilson, M.
Josowicz, Y. Q. Wang and U. H. F. Bunz, Chem. Commun., 2003,
2962.
6 J. N. Wilson and U. H. F. Bunz, J. Am. Chem. Soc., 2005, 127,
4124.
L
ꢁ1), respectively. According to de Leeuw et al., the ionization
7 Y.-M. Zhao and R. R. Tykwinski, J. Am. Chem. Soc., 1999, 121,
458.
8 J. E. Klare, G. S. Tulevski, K. Sugo, A. de Picciotto, K. A. White
and C. Nuckolls, J. Am. Chem. Soc., 2003, 125, 6030.
9 J. N. Wilson, M. D. Smith, V. Enkelmann and U. H. F. Bunz,
Chem. Commun., 2004, 1700.
potential (EHOMO) and electron affinity (ELUMO) are approxi-
mately equal to the onset oxidation potential and the onset
reduction potential (vs. Ag/Ag1) plus 4.7 eV, respectively.14
Fluorescence quantum yields (Ff) of the oligomers in cyclo-
hexane solution were measured by using 9,10-diphenylanthra-
cene as standard: quantum yield is 0.95 in cyclohexane.15
Values are calculated according to eqn (1), where Funk is the
fluorescence quantum yield of the sample, Fstd is the fluores-
cence quantum yield of the standard, Iunk and Istd are the
integrated emission intensities of the sample and the standard,
respectively, Aunk and Astd are the absorbance of the sample
and the standard at the excitation wavelength, respectively,
and Zunk and Zstd are the refractive indexes of the correspond-
ing solutions (pure solvents were assumed).
10 W.-L. Yu, H. Meng, J. Pei and W. Huang, J. Am. Chem. Soc.,
1998, 120, 11808.
11 H.-H. Sung and H.-C. Lin, Macromolecules, 2004, 37, 7945.
12 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N.
Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V.
Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R.
Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J.
B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.
Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J.
J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M.
C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghava-
chari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P.
Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A.
Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M.
W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and
J. A. Pople, GAUSSIAN 03 (Revision C.02), Gaussian, Inc.,
Wallingford, CT, 2004.
2
)
Funk = Fstd(Iunk/Aunk)(Astd/Istd)(Zunk/Zstd
(1)
General syntheses
The general synthetic routes of the desired oligomers are
outlined in Scheme 1. Oligofluorene derivatives were synthe-
sized according to the literature.15–17 Firstly, 2,5-dibromo-p-
xylene (1) was oxidized with potassium permanganate under
alkali conditions to afford 2,5-dibromoterephthalic acid. This
is the key step for the synthesis of the oxadiazole monomer
(20% yield). Then, the acid group was further esterified to give
2,5-dibromoterephthalic acid diethyl ester (2).18 After the ester
groups had been converted to benzoyl hydrazide (3), they were
reacted with aryl chloride to form compound 4. Finally,
oxadiazole monomer (5) was produced by the dehydrative
cyclization of hydrazides in POCl3. The resulting oligomers
13 C.-F. Shu, R. Dodda and F.-I. Wu, Macromolecules, 2003, 36,
6698.
14 (a) D. M. Leeuw, M. M. J. Simenon, A. R. Brown and R. E. F.
Einerhand, Synth. Met., 1997, 87, 53; (b) Y. Cui, X. Zhang and S.
A.Jenekhe Jenekhe, Macromolecules, 1999, 32, 3824.
15 M. Mardelli and J. Olmsted, J. Photochem., 1977, 7, 277.
16 (a) D. L. Pearson and J. M. Tour, J. Org. Chem., 1997, 62, 1376; (b)
L. Jones, J. S. Schumn and J. M. Tour, J. Org. Chem., 1997, 62, 1388.
17 Y.-H. Geng, A. Trajkovska, D. Katsis, J. J. Ou, S. W. Culligan and
S. H. Chen, J. Am. Chem. Soc., 2002, 124, 8337.
18 B. Liu, W.-L. Yu, Y.-H. Lai and W. Huang, Chem. Mater., 2001,
13, 1984.
ꢀc
670 | New J. Chem., 2006, 30, 667–670 This journal is the Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2006