7
-
heterolysis. In addition, N2O4 can also be provided from the reaction between NO3 and NO2+ with the release of oxygen. The gem-
nitrosonitro intermediate comes from the radical coupling between carbon radical and NO free radical arrising from the SET
reaction between NO+ and nitroxyl radical. At last, the gem-nitrosonitro product is oxidized to the gem-dinitro derivative with ozone.
Scheme 4. Proposed reaction mechanism.
Conclusions
In conclusion, we reported an efficient method to synthesize gem-dinitro compounds from secondary nitroalkanes with nitryl
chloride as nitrosating reagent and ozone as oxidizing agent. The nitrosation reaction involves a single electron transfer process.
This method is especially suitable for introducing nitro functionality into the secondary nitroalkanes with high steric hindrance.
Acknowledgments
This work was sponsored by Qing Lan Project of Jiangsu Province, P. R. China. The authors are grateful to Dr. Yue Zhao from
Nanjing University for the single-crystal structure analysis.
References and notes
1.
2.
3.
4.
5.
6.
7.
Agrawal, J. P.; Hodgson, R. D. Organic Chemistry of Explosives, Wiley: New York, 2007.
Agrawal, J. P. Prog. Energy Combust. Sci. 1998, 24, 1-30.
Giles, J. Nature. 2004, 427, 580-581.
Zhang, Q.; Shreeve, J. M. Chemical Reviews. 2014, 114, 10527-10574.
Klapötke, Thomas M. Chemistry of High-Energy Materials, Walter de Gruyter : Berlin-New York, 2011.
(a) Kamlet, M. J.; Jacobs, S. J. J. Chem. Phys.1968, 48, 23-35. (b) Mul, J.; Korting, P.; Schoyer, H. AIAA, 1988, 88-3354.
(a) Huang, S.; Tian, J.; Qi, X.; Wang, K.; Zhang, Q. Chem. Eur. J. 2017, 23, 12787-12794. (b) Li, H.; Zhao, F. Q.; Gao, H. X.; Tong, J. F.; Wang, B. Z.;
Zhai, L. J.; Huo, H. Inorganica Chimica Acta. 2014, 423, 256-262. (c) Langlet, A.; Latypov, N. V.; Wellmar, U.; Bemm, U.; Goede, P.; Bergman, J. J.
Org. Chem. 2002, 67, 7833-7838. (d) Axenrod, T.; Guan, X.; Sun, J.; Qi, L.; Chapman, R. D.; Gilardi, R. D. Tetrahedron Letters. 2001, 42, 2621-2623.
Kaplan, R. B.; Shechter, H. J. Am. Chem. Soc. 1961, 83, 3535-3536.
8.
9.
(a) Matacz, Z.; Piotrowska, H.; Urbanski, T. Pol. J. Chem. 1979, 53, 187-192. (b) Kornblum, N.; Singh, H. K.; Kelly, W. J. J. Org. Chem. 1983, 48,
332-337. (c) Archibald, T. G.; Garver, L. C.; Baum, K.; Cohen, M. C. J. Org. Chem. 1989, 54, 2869-2873.
10. Ilovaisky, A. I.; Merkulova, V. M.; Ogibin, Y. N.; Nikishin, G. I. Russ. Chem. Bull. 2005, 54, 1585-1592.
11. Lister, T. E.; Fox, R. V. J. Appl. Electrochem. 2008, 38, 523–529.
12. (a) Moiseev, I. K.; Mratkhuzina, T. A.; Balenkova, E. S.; Makarova, N. V. Russ. J. Org. Chem. 1999, 35, 839-840. (b) Luk’yanov, O. A.; Pokhvisneva,
G. V. Russ. Chem. Bull. 1991, 40, 1906-1908. (c) Scholl, R. Ber. 1888, 21, 506. (d) Bisgrove, D. E.; Clapp, L. B.; Grabiel, C. E. J. Am. Chem. Soc.
1955, 77, 1293-1294.
13. (a) Rheinboldt, H.; Dewald, M. Chem. Ber. 1927, 60, 249-251. (b) Charlton, W.; Earl, J. C.; Kenner, J.; Luciano, A. A. J. Chem. Soc. 1932, 41, 30-41.
(c) Ungnade, H. E.; Kissinger, L. W. J. Org. Chem. 1959, 24, 666-668. (d) Frojmovic, M. M.; Just, G. Can. J. Chem. 1968, 46, 3719-3726.
14. (a) Sollott, G. P.; Gilbert, E. E. J. Org. Chem. 1980, 45, 5405-5408. (b) Dave, P. R.; Ferraro, M.; Ammon, H. L.; Choi, C. S.
J. Org. Chem. 1990, 55, 4459-4461. (c) Ling, Y.; Zhang, P.; Sun, L.; Lai, W.; Luo, J. Synthesis. 2014, 46, 2225. (d) Ling, Y.; Ren, X.; Lai, W.; Luo, J.
Eur. J. Org. Chem. 2015, 1541-1547. (e) Hou, T. J.; Zhang, J.; Wang, C. J.; Luo, J. Org. Chem. Frontiers. 2017, 4, 1819-1823.
15. Archibald, T. G.; Baum, K. J. Org. Chem. 1988, 53, 4645-4649.
16. (a) Snyder, J. P.; Heyman, M. L.; Suciu, E. N. J. Org. Chem. 1975, 40, 1395-1405. (b) Greene, F. D.; Gilbert, K. E. J. Org. Chem. 1975, 40, 1409-1415.
(c) Parmeggiani, C.; Matassini, C.; Cardona, F.; Goti, A. Synthesis. 2017, 49, 2890-2900. (d) Quek, S. K.; Lyapkalo, I. M.; Han, H. V. Synthesis. 2006,
1423-1426.
17. Zhang, M. X.; Eaton, P. E.; Gilardi, R. Angew. Chem. Int. Ed. 2000, 39, 401-404.
18. (a) Tani, K.; Lukin, K. A.; Eaton, P. E. J. Am. Chem. Soc. 1997, 119, 1476-1477. (b) Lukin, K. A.; Li, J. C.; Eaton, P. E.; Kanomate, N.; Hain, J.;
Punzalan, E.; Gilardi, R. J. Am. Chem. Soc. 1997, 119, 9591-9602.
19. Meinwald, J.; Grossman, R. F. J. Am. Chem. Soc. 1956, 78, 992-995.
20. (a) Price, C. C.; Sears, C. A. J. Am. Chem. Soc. 1953, 75, 3276-3277. (b)Shechter, H.; Conrad, F.; Daulton, A. L.; Kaplan, R. B. J. Am. Chem. Soc.
1952, 74, 3052-3056. (c) Olah, G.; Kuhn, S.; Mlinko, A. J. Chem. Soc. 1956, 4257-4258.
21. Dave, P. R.; Bracuti, A.; Axenrod, T.; Liang, B. M. Tetrahedron. 1992, 48, 5839-5846.
22. (a) Nielsen, A. T. J. Org. Chem. 1962, 27, 1993-1998. (b) Singh, P. J. Org. Chem. 1975, 40, 1405-1408.
23. (a) Olah, G. A.; Prakash, G. K. S.; Wang, Q.; Li, X. Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd, 2001, DOI:
10.1002/047084289X.rn043. (b) Eisenhofer, A.; Wille, U.; Koenig, B. Australian Journal of Chemistry, 2017, 70, 407-412.