Substitution Reactions of O-Aryl Thionobenzoates
on the nature of nucleophiles (e.g., neutral amines and anionic
nucleophiles).8-16
analysis of the free energy profile in alkaline hydrolysis of
methyl formate.19
It has been reported that the effect of replacing the O atom
of the CdO bond in 4-nitrophenyl benzoate (PNPB) by
polarizableSonreactivityandreactionmechanismissignificant.20-25
We have shown that O-4-nitrophenyl thionobenzoate (PNPTB)
is 1.4 × 104 times more reactive than PNPB toward 4-chlo-
rothiophenoxide.20 In contrast, Campbell et al. have reported
that PNPTB is 8 times less reactive than PNPB toward OH-.21
The effect of changing the electrophilic center from CdO to
CdS on reaction mechanism has also been investigated. We
have found that reactions of PNPTB with a series of alicyclic
secondary amines proceed through two intermediates, a zwit-
terionic tetrahedral intermediate T ( and its deprotonated form
T-, while the corresponding reactions of its oxygen analogue
Reactions of esters with amines have generally been reported
to proceed through an addition-elimination mechanism, in
which the rate-determining step (RDS) is dependent on the
basicity of the entering amine and the leaving group.12-15
Evidence provided is nonlinear Brønsted-type plots that have
often been observed for reactions of esters possessing a weakly
basic aryloxide (e.g., 2,4-dinitrophenoxide).12-15 Theoretical
studies have also favored a stepwise mechanism although the
difference in activation energies between the two pathways was
calculated to be insignificant.16
However, reactions of carboxylic esters with anionic nucleo-
philes have not been completely understood. Williams et al.
have concluded that nucleophilic substitution reactions of
4-nitrophenyl acetate with a series of aryloxides proceed through
a concerted mechanism. The evidence consisted mainly of the
absence of a break (or curvature) in the Brønsted-type plot when
the pKa of the incoming aryloxide corresponded to that of the
leaving 4-nitrophenoxide.10 The concerted mechanism has been
supported by Hengge et al. from heavy atom kinetic isotope
effects (KIEs)11 and by Xie et al. from computational studies.9a
On the contrary, we have concluded that reactions of phenoxide
with a series of substituted phenyl acetates proceed through a
stepwise mechanism on the basis of the kinetic results that σo
constants exhibit better Hammett correlation than σ- constants.17
A similar conclusion has been drawn from kinetic studies of
alkaline hydrolysis of aryl benzoates18 as well as from theoretical
22
(
PNPB proceed without the deprotonation process from T
.
Similar results have been reported for aminolyses of aryl
carbonates and thionocarbonates.23,24
Recently, we performed a systematic study for alkaline
hydrolysis of O-Y-substituted phenyl thionobenzoates (1a-h)
and O-4-nitrophenyl X-substituted thionobenzoates (2a-f). The
reactions were concluded to proceed through an anionic
tetrahedral intermediate T-, in which departure of the leaving
group from T- occurs after the RDS.25 To get more information
on reactivity and mechanism, our kinetic study has been
-
extended to reactions of 1a-h and 2a-f with N3 and CN-
(i.e., representing an anionic nitrogen and carbon nucleophile,
respectively). The kinetic results obtained from the current
-
reactions with N3 and CN- have been compared with those
reported previously for the corresponding reactions with OH-
to investigate the effect of the nucleophile nature on reactivity
and mechanism.
(9) (a) Xie, D.; Zhou, Y.; Xu, D.; Guo, H. Org. Lett. 2005, 7, 2093–2095.
(b) Chong, L. T.; Bandyopadhyay, P.; Scanlan, T. S.; Kuntz, I. D.; Kollman,
P. A. J. Comput. Chem. 2003, 24, 1371–1377. (c) Tantillo, D. J.; Houk, K. N.
J. Org. Chem. 1999, 64, 3066–3076.
(10) (a) Williams, A. Acc. Chem. Res. 1989, 22, 387–392. (b) Ba-Saif, S.;
Luthra, A. K.; Williams, A. J. Am. Chem. Soc. 1989, 111, 2647–2652. (c) Ba-
Saif, S.; Luthra, A. K.; Williams, A. J. Am. Chem. Soc. 1987, 109, 6362–6368.
(11) (a) Hess, R. A.; Hengge, A. C.; Cleland, W. W. J. Am. Chem. Soc.
1997, 119, 6980–6983. (b) Hengge, A. C.; Hess, R. A. J. Am. Chem. Soc. 1994,
116, 11256–11263. (c) Hengge, A. C. J. Am. Chem. Soc. 1992, 114, 2747–
2748.
(12) (a) Jencks, W. P. Catalysis in Chemistry and Enzymology; McGraw-
Hill: New York, 1969; pp 480-483. (b) Jencks, W. P. Chem. Soc. ReV. 1981,
10, 345–375. (c) Jencks, W. P.; Gilchrist, M. J. Am. Chem. Soc. 1968, 90, 2622–
2637. (d) Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824–3829.
(13) (a) Castro, E. A.; Echevarria, G. R.; Opazo, A.; Robert, P.; Santos, J. G.
J. Phys. Org. Chem. 2006, 19, 129–135. (b) Castro, E. A.; Campodonico, P. R.;
Contreras, R.; Fuentealba, P.; Santos, J. G.; Leis, J. R.; Garcia-Rio, L.; Saez,
J. A.; Domingo, L. R. Tetrahedron 2006, 62, 2555–2562. (c) Castro, E. A.;
Aliaga, M.; Gazitua, M.; Santos, J. G. Tetrahedron 2006, 62, 4863–4869. (d)
Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70,
7788–7791. (e) Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2005, 70,
2679–2685. (f) Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005,
70, 8088–8092. (g) Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2004,
69, 6711–6714. (h) Castro, E. A.; Andujar, M.; Toro, A.; Santos, J. G. J. Org.
Chem. 2003, 68, 3608–3613. (i) Castro, E. A.; Aliaga, M.; Campodonico, P.;
Santos, J. G. J. Org. Chem. 2002, 67, 8911–8916.
Results and Discussion
The kinetic study was performed under pseudo-first-order
conditions with the concentration of nucleophile in excess over
the substrate concentration. All reactions obeyed first-order
kinetics with quantitative liberation of Y-substituted phenoxide
ion and/or its conjugate acid. Pseudo-first-order rate constants
(kobsd) were calculated from the equation ln(A∞ - At) ) -kobsd
t
+ C. The plots of kobsd vs nucleophile concentration were linear
passing through the origin. Thus, the rate equation can be given
as eq 1. Second-order rate constants (kNu) have been determined
from the slope of the linear plots and summarized in Table 1
for reactions of 1a-h and in Table 3 for those of 2a-f. It is
(19) Pliego, J. R., Jr.; Riveros, J. M. Chem. Eur. J. 2002, 8, 1945–1953.
(20) Um, I. H.; Lee, J. Y.; Bae, S. Y.; Buncel, E. Can. J. Chem. 2005, 83,
1365–1371.
(21) Campbell, P.; Lapinskas, B. A. J. Am. Chem. Soc. 1977, 99, 5378–
5382.
(14) (a) Lee, I.; Lee, H. W.; Yu, Y. K. Bull. Korean Chem. Soc. 2003, 24,
993–998. (b) Oh, H. K.; Park, C. Y.; Lee, J. M.; Lee, I. Bull. Korean Chem.
Soc. 2001, 22, 383–387. (c) Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org.
Chem. 2000, 65, 4706–4711.
(15) (a) Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org.
Chem. 2004, 69, 3937–3942. (b) Um, I. H.; Min, J. S.; Lee, H. W. Can. J. Chem.
1999, 77, 659–666.
(16) (a) Galabov, B.; Atanasov, Y.; Ilieva, S., III. J. Phys. Chem. A 2005,
109, 11470–11474. (b) Ilieva, S.; Galabov, B.; Musaev, D. G.; Morokuma, K.;
Schaefer, H. F., III. J. Org. Chem. 2003, 68, 1496–1502. (c) Yang, W.;
Drueckhammer, D. G. Org. Lett. 2000, 2, 4133–4136.
(17) (a) Buncel, E.; Um, I. H.; Hoz, S. J. Am. Chem. Soc. 1989, 111, 971–
975. (b) Um, I. H.; Hwang, S. J.; Buncel, E. J. Org. Chem. 2006, 71, 915–920.
(18) (a) Um, I. H.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org.
Chem. 2002, 67, 8475–8480. (b) Um, I. H.; Lee, J. Y.; Fujio, M.; Tsuno, Y.
Org. Biomol. Chem. 2006, 4, 2979–2985.
(22) (a) Um, I. H.; Hwang, S. J.; Yoon, S. R.; Jeon, S. E.; Bae, S. K. J. Org.
Chem. 2008, 73, 7671–7677. (b) Um, I. H.; Seok, J. A.; Kim, H. T.; Bae, S. K.
J. Org. Chem. 2003, 68, 7742–7746. (c) Um, I. H.; Lee, S. E.; Kwon, H. J. J.
Org. Chem. 2002, 67, 8999–9005.
(23) (a) Castro, E. A.; Cubillos, M.; Aliaga, M.; Evangelisti, S.; Santos, J. G.
J. Org. Chem. 2004, 69, 2411–2416. (b) Castro, E. A.; Andujar, M.; Camp-
odonico, P.; Santos, J. G. Int. J. Chem. Kinet. 2002, 34, 309–315. (c) Castro,
E. A.; Galvez, A.; Leandro, L.; Santos, J. G. J. Org. Chem. 2002, 67, 4309–
4315. (d) Castro, E. A.; Leandro, L.; Quesieh, N.; Santos, J. G. J. Org. Chem.
2001, 66, 6130–6135.
(24) Um, I. H.; Yoon, S. R.; Park, H. R.; Han, H. J. Org. Biomol. Chem.
2008, 6, 1618–1624.
(25) Um, I. H.; Lee, J. Y.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2004, 69,
2436–2441.
(26) Um, I. H.; Kim, E. H.; Han, H. J. Bull. Korean Chem. Soc. 2008, 29,
580–584.
J. Org. Chem. Vol. 74, No. 3, 2009 1213