954
I. Zadroz˙na et al. / Il Farmaco 60 (2005) 948–954
[14] I. Zadroz˙na, E. Kornacka, 4,5-Dihydroisoxazoles. Regioselectivity in
Analysis of mixture of compounds 14-trans and 14-cis
C13H14N2O3 Calc.: C 63. 42, N 11.38, H 5.69, Found: C 63.43,
N 11.37, H 5.69.
the 1,3-Dipolar Cycloaddition of Nitrile Aliphatic Oxides to Cin-
namicAcid Esters, NMR Criteria, Bull. Pol.Acc. Chem. 45 (4) (1997)
363–372.
[15] I. Zadroz˙na, J. Kurkowska, “Microbial Biotransformation of the Sub-
stituted 4,5-Dihydroisoxazoles” –7th European Conference on Spec-
troscopy of Biological Molecules, Madrid, Spain, September 1997
(7–12).
4.4.2. Microbiological hydrolysis of 13-trans and 13-cis
using R. rhodochrous PCM 909
Product, yellow oil; 48 h; yield: 0.014 g (11%).
[16] I. Zadroz˙na, E. WalTg, D. Starzomska, J. Kurkowska, Chemoenzy-
matic synthesis of optically active acids and alcohols with a 4,5-
dihydroisoxazolic group, XVII-th European Colloquium on Hetero-
cyclic Chemistry B-112 (1998) 4–7 [Rouen, France].
[17] I. Zadroz˙na, E. Kornacka, Reactivity of methylsulfates of N-Methyl-
4,5-dihydroisoxazolic derivatives of cinnamic acid esters, Bull. Pol.
Acc. Chem. 47 (2) (1999) 119–134.
[18] I. Zadroz˙na, J. Kurkowska, I. Makuch, Synthesis of optically active
4,5-dihydroisoxazolecarboxylic acids, Bull. Pol. Acc. Chem. 47 (2)
(1999) 111–118.
[19] I. Zadroz˙na, J. Kaniuk, J. Kurkowska, I. Makuch, H. Kruszewska,
Microbial synthesis of novel 4,5-dihydroisoxazole derivatives.
Etheral bond cleavage, Bull. Pol. Acc. 48 (3) (2000) 203–211.
[20] J. Kurkowska, I. Zadroz˙na, Utilisation of enols of mono- and dicarbo-
nyls compounds in 1,3-dipolar cycloaddition reactions, J. Chem. Res.
(M) (2003) 0541-0553; [(S) (2003) 254-255].
4.4.2.1. trans 3-Carboxy-2,3-dimethyl-5-hydroxymethyl-5-
phenylisoxazolidine (15-trans). 1H NMR: 1.59 (s, 3H, CH3),
3.00 and 3.45 (2 × d, 2H, CH2, J = 13.4 Hz), 2.96 (s, 3H,
CH3–N), 3.88 (s, 2H, CH2), 7.39–7.51 (m, 5H,Ar); 13C NMR:
21.18 (CH3), 38.77 (CH3–N), 51.28 (C-4), 71.59 (CH2), 77.92
(C-3), 89.96 (C-5), 125.57, 128.08, 128.91, 139.32 (Ar),
179.51 (C=O); IR(film) cm−1: 3340 (OH), 1708 (C=O);
Analysis of compound C13H16NO4 Calc.: C 62.15, N 5.58, H
6.77, Found: C 62.20, N 5.57, H 6.63.
References
[21] J. Kurkowska, I. Zadroz˙na, K. Rzez´nicka, Chemoenzymatic synthesis
of primary alcohols with a 2-isoxazoline moiety, J. Chem. Res. (S)
(2003) 480–482.
[22] A.P. Kozikowski, M. Adamczyk, Methods for the stereoselective cis
cyanohydroxylation and carboxyhydroxylation of olefins, J. Org.
Chem. 48 (1983) 336–372.
[23] A. Belly, C. Petrus, F. Petrus, Recherches dans la serie des azoles.
Reactivite des sels de methyl-2 isoxazolinium-2. Application a la
synthese d’isoxazolines-3, Bull. Soc. Chim. Fr. 5–6 (1974) 1025–
1028.
[24] T. Mukayama, T. Hoshino, The reactions of primary nitroparaffins
with isocyanates, J. Am. Chem. Soc. 82 (1960) 5339–5342.
[25] K. Larsen, K. Torssell, An improved procedure for the preparation of
2-isoxazolines, Tetrahedron 40 (1984) 2985–2988.
[26] S. Kwiatkowski, S. Ostrowski, Transformations of N-methyl-4,5-
dihydroisoxazolium methylsulphates, Bull. Soc. Chim. Belg. 102
(1993) 259–268.
[27] A. Cerri, C. De Micheli, R. Gandolfi, Dihydro-1,2-oxazole deriva-
tives. Part IX. Stereoselective synthesis of tetrahydro-1,2-oxazoles by
sodium borohydride reduction of 4,5-Dihydro-1,2-oxazolium tet-
rafluoroborates, Synthesis (Mass.) 10 (1974) 710–712.
[28] H. Kakeya, N. Sakai, A. Sano, M. Yokohama, T. Sugai, H. Ohta,
Microbial hydrolysis of 3-substituted glutaronitriles, Chem. Lett.
(Jpn.) 10 (1991) 1823–1824.
[1] J. Zhang, D.P. Curran, Stereoselective Synthesis of 1,2-Diols by the
Cycloadditive Strategy: Total Synthesis of ( )-exo-Breviocomin and
( )- and (–)-Pestalotin, J. Chem. Soc., Perkin Trans. 1 11 (1991)
2627–2631.
[2] S. Yang, W. Hayden, H. Griengl, Resolution of D2-Izoxazoline-5-
carboxylates by Protease from Aspergillus Oryzae Providing Masked
Synthons for Enantiopure b-Aminoalcohols and Related Structures,
Mh. Chem. 125 (1994) 469–477.
[3] M. De Amici, C. De Micheli, T. Gianferrara, G. Stefanicich,
Chemoenzymatic Synthesis of Chiral Biologically Active Hetero-
cycles, Il Farmaco 52 (5) (1997) 307–311.
[4] I. Zadroz˙na, J. Kurkowska, I. Makuch, Enzymatic and microbial method
of preparation of optically active 3-methyl-4-phenyl-4,5-dihydro-
isoxazole-4-carboxylic acid, Synth. Com. 27 (23) (1997) 4181–4191.
[5] I. Zadroz˙na, J. Kurkowska, H. Kruszewska, I. Makuch, 4,5-
Dihydroisoxazoles. Testing of antimicrobial activity, Farmaco 55
(2000) 499–501.
[6] P. Wade, M. Pillay, S. Singh, Cyanogen Chloride N-Oxide Cycload-
ditions. A Simple, Short Route toAT-125, Tetrahedron Lett. 23 (1982)
4563–4566.
[7] A. Kozikowski, P. Stein, INOC Route to Carbocyclics:A Formal Total
Synthesis of ( )-Sarcomycin, J. Am. Chem. Soc. 104 (1982) 4023–
4024.
[8] A. Kozikowski, The Isoxazoline Route to the Molecules of Nature,
Ac., Chem. Res 17 (1984) 410–416.
[9] K. Burri, R. Cardone, W.Y. Chen, P. Rosen, Preparation of Macrolides
via the Wittig Reaction. A total Synthesis of (–)-Vermiculine, J. Am.
Chem. Soc. 100 (1978) 7069–7071.
[29] M.A. Cohen, J. Sawden, N.J. Turner, Selective hydrolysis of nitriles
under mild conditions by an enzyme, Tetrahedron Lett. 31 (49) (1990)
7223–7226.
[30] O. Meth-Cohn, M.X. Wang, A powerful new nitrile hydratase for
organic synthesis—aromatic and heteroaromatic nitrile hydrolyses—
a rationalisation, Tetrahedron Lett. 36 (52) (1995) 9561–9564.
[31] O. Meth-Cohn, M.X. Wang, An in-depth study of the biotransforma-
tion of nitriles into amides and/or acids using Rhodococcus rhodoch-
rous AJ 270, J. Chem. Soc., Perkin Trans. 18 (1997) 1099–1104.
[32] O. Meth-Cohn, M.X. Wang, Regioselective biotransformations of
dinitriles usimg Rhodococcus sp.AJ 270, J. Chem. Soc., Perkin Trans.
121 (1997) 3197–3204.
[33] M.R. Dadd, T.D.W. Claridge, R. Walton, A.J. Pettman, C.J. Knowles,
Regioselective biotransformation of the dinitrile compounds 2-,3- and
4-(cyanomethyl)benzonitrile by the soil bacterium Rhodococcus
rhodochrous LL 100-21, Enz. Microb. Technol. 29 (2001) 20–27.
[34] European Pharmacopeia, in: 5th ed, Microbial Assay of Antibiotics,
2004, pp. 188–194.
[10] A. Kozikowski, H. Ischida, Intramolecular [3+2] Cycloaddition Reac-
tions in the Indole Series “The Nitrile Oxide Route to the Ergot
Alkaloids”. 1. Chanoclavine I, J. Am. Chem. Soc. 102 (1980) 4265–
4267.
[11] G. Zimmermann, W. Hass, H. Faasch, H. Schmalle, W.A. König,
Synthese reiner Stereoisomer der N-terminalen Aminosäure von
Nikkomycin B, Liebigs Ann. Chem. 11 (1985) 2165–2177.
[12] A.P. Kozikowski, Y.Y. Chen, Intramolecular Nitrile Ooxide Cycload-
dition (INOC) Reactions in the Indole Series. 2. Total Synthesis of
Racemic and Optically Active Paliclavine and 5-epi-Paliclavine, J.
Org. Chem. 46 (1981) 5248–5250.
[13] A.P. Kozikowski,Y.Y. Chen, B.C. Wang, Z.B. Xu, The Intramolecular
Nitrile Ooxide Cycloaddition (INOC) Route to the Ergot Alkaloids:
use of the Isoxazoline to c-Amino Alcohol Conversion in the Total
Synthesis of (+)-, Paliclavine, Tetrahedron 40 (1984) 2345–2358.