Freifeld et al.
SCHEME 1. Synthesis of 5a-5ada
substituted pyrroles are not available. Some years ago, Montforts
and co-workers reported13 the synthesis of highly substituted
pyrroles based on reactions of simple silyl enol ethers with
azidoketals and a subsequent aza-Wittig reaction.14 However,
the application of this method to the use of 1,3-bis-silyl enol
ethers failed (due to the formation of complex mixtures in their
reaction with azidoketals). To overcome these limitations, we
developed a new synthesis of highly substituted pyrroles based
on the reaction of R-azidoketones with 1,3-dicarbonyl dianions.
Herein, we report full details of this work. With regard to our
preliminary communication in this field,15 we significantly
extended the preparative scope of our methodology and report,
(5) For pyrrole natural products, see: (a) Falk, H. The Chemistry of Linear
Oligopyrroles and Bile Pigments; Springer-Verlag: Wien, Germany, 1989;
p 355. (b) Montforts, F.-P.; Schwartz, U. M. Angew. Chem. 1985, 97, 767;
Angew. Chem., Int. Ed. Engl. 1985, 24, 775. (c) Dutton, C. J.; Fookes, C.
J. R.; Battersby, A. R. J. Chem. Soc., Chem. Commun. 1983, 1237. (d)
Stork, G.; Nakahara, Y.; Nakahara, Y.; Greenlee, W. J. J. Am. Chem. Soc.
1978, 100, 7775. (e) Stork, G.; Nakamura, E. J. Am. Chem. Soc. 1983,
105, 5510. (f) Lindel, T.; Breckle, G.; Hochgu¨rtel, M.; Volk, C.; Grube,
A.; Ko¨ck, M. Tetrahedron Lett. 2004, 45, 8149.
(6) (a) Huisgen, R.; Gotthard, H.; Bayer, H. O.; Scha¨fer, F. C. Chem.
Ber. 1970, 103, 2611. (b) Chiu, P.-K.; Lui, K.-H.; Maini, P. N.; Sammes,
M. P. J. Chem. Soc., Chem. Commun. 1987, 109. (c) Barton, D. H. R.;
Kervagoret, J.; Zard, S. Z. Tetrahedron 1990, 46, 7587. (d) Roskamp, E.
J.; Dragovich, P. S.; Hartung, J. B.; Pederson, S. F. J. Org. Chem. 1989,
54, 4736. (e) Tang, J.; Verkade, J. G. J. Org. Chem. 1994, 59, 7793. (f) De
Kimpe, N.; Tehrani, K. A.; Stevens, C.; De Cooman, P. Tetrahedron 1997,
53, 3693. (g) Alberala, A.; Ortega, A. G.; Sa´daba, M. L.; Snudo, C.
Tetrahedron 1999, 55, 6555. (h) Grigg, R.; Savic, V. Chem. Commun. 2000,
873. (i) Trofimov, B. A.; Tarasova, O. A.; Mikhaleva, A. I.; Kalinina, N.
A.; Sinegovskaya, L. M.; Henkelmann, J. Synthesis 2000, 11, 1585. (j) Nair,
V.; Vinod, A. U.; Rajesh, C. J. Org. Chem. 2001, 66, 4427. (k) Ranu, B.
C.; Hajra, A. Tetrahedron 2001, 57, 4767. (l) Lagu, B.; Pan, M.; Wachter,
M. P. Tetrahedron Lett. 2001, 42, 6027. (m) Quiclet-Sire, B.; Wendeborn,
F.; Zard, S. Z. Chem. Commun. 2002, 2214. (n) Demir, A. S.; Akhmedov,
I. M.; Sesenoglu, O¨ . Tetrahedron 2002, 58, 9793. (o) Yoshida, M.; Kitamura,
M.; Narasaka, K. Bull. Chem. Soc. Jpn. 2003, 76, 2003. (p) Knight, D. W.;
Sharland, C. M. Synlett 2003, 2258. (i) Yu, M.; Pagenkopf, B. L. Org.
Lett. 2003, 5, 5099. (q) Dhawan, R.; Arndtsen, B. A. J. Am. Chem. Soc.
2004, 126, 468. (r) Flo¨gel, O.; Reissig, H.-U. Synlett 2004, 895. (s) Song,
Z.; Reiner, J.; Zhao, K. Tetrahedron Lett. 2004, 45, 3953. (t) Chien, T.-C.;
Meade, E. A.; Hinkley, J. M.; Townsend, L. B. Org. Lett. 2004, 6, 2857.
(u) Ramanathan, B.; Keith, A. J.; Armstrong, D.; Odom, A. L. Org. Lett.
2004, 6, 2957. (v) Trofimov, B. A.; Zaitsev, A. B.; Schmidt, E. Y.;
Vasil’tsov, A. M.; Mikhaleva, A. I.; Ushakov, I. A.; Vashchenko, A. V.;
Zorina, N. V. Tetrahedron Lett. 2004, 45, 3789. (w) Agarwal, S.; Kno¨lker,
H.-J. Org. Biomol. Chem. 2004, 2, 3060. (x) Dieltiens, N.; Stevens, C. V.;
De Vos, D.; Allaert, B.; Drozdzak, R.; Verpoort, F. Tetrahedron Lett. 2004,
45, 8995.
(7) For the condensation of thiolactams with bromomethyl ketones or
esters, followed by the extrusion of sulfur, see: (a) Roth, M.; Dubs, P.;
Go¨tschi, E.; Eschenmoser, A. HelV. Chem. Acta 1971, 36, 710. For the
reaction of lactim ethers with active methylene compounds, see: (b) Celerier,
J.-P.; Deloisy, E.; Lhommet, G.; Maitte, P. J. Org. Chem. 1979, 44, 3089.
For the reaction of lactams or thiolactams with organometallic reagents,
see: (c) Lee, H. K.; Kim, J.; Pak, C. S. Tetrahedron Lett. 1999, 40, 2173.
(d) Yamaguchi, M.; Hirao, I. J. Org. Chem. 1985, 50, 1975. For the reaction
of methyl bromoacetate with ω-mesylnitriles, see: (e) Hannick, S. M.; Kishi,
Y. J. Org. Chem. 1983, 48, 3833.
(8) Lambert, P. H.; Vaultier, M.; Carrie, R. J. Org. Chem. 1985, 50,
5352.
(9) Lygo, B. Synlett 1993, 765.
(10) Wang, M.-X.; Liu, Y.; Gao, H.-Y.; Zhang, Y.; Yu, C.-Y.; Huang,
Z.-T.; Fleet, G. W. J. J. Org. Chem. 2003, 68, 3281.
(11) Bellur, E.; Go¨rls, H.; Langer, P. J. Org. Chem. 2005, 70, 4751.
(12) Bellur, E.; Langer, P. Tetrahedron Lett. 2006, 47, 2151.
a (i) 2.4 equiv of LDA, THF, 0 °C; (ii) -78 °C f 20 °C; (iii) PPh3,
CH2Cl2, 24 h, THF, 45 °C; (iV) TFA, CH2Cl2, 1 h, 20 °C.
for example, the synthesis of bicyclic pyrroles and 4,5,6,7-
tetrahydroindoles. All reactions proceed with excellent regiose-
lectivity. In contrast, the preparative scope of the classic Knorr
or Hantzsch procedures4 is often limited by the formation of
regioisomers. Notably, the substitution pattern of the pyrroles
prepared by our methodology is not readily accessible by other
methods.
Results and Discussion
The reaction of the dianions of 1,3-dicarbonyl compounds
1a-o with R-azidoketones 2a-f afforded the 6-azido-5-
hydroxy-3-oxoalkanoates 3a-ad. The intramolecular Staudinger-
aza-Wittig reaction of the latter gave the 2-alkylidenepyrrolidines
4a-ad, which were transformed into the pyrroles 5a-ad by
treatment with trifluoroacetic acid (TFA; Scheme 1, Table 1).
The reaction of dilithiated ethyl and tert-butyl acetoacetate
(1a,b) with 3-azidobutan-2-one (2a) and 1-azidopropan-2-one
(2b) afforded the open-chained products 3a-d, which were
transformed into the 2-alkylidenepyrrolidines 4a-d. The reac-
tion of the ethyl esters 4a,b with TFA gave the desired pyrroles
5a,b. Treatment of the tert-butyl esters 4c,d with TFA resulted
in decomposition. The reaction of dilithiated methyl 4-meth-
oxyacetoacetate (1c) with 2a and 2b and subsequent cyclization
afforded the 2-alkylidenepyrrolidines 4e,f. Treatment of the latter
with TFA resulted in decomposition. The reaction of dilithiated
methyl 3-oxopentanoate (1d) with 2a and subsequent cyclization
afforded the 2-alkylidenepyrrolidine 4g, which was transformed
into the 3,4,5-trimethylpyrrole 5g. Likewise, 3-ethyl-4-meth-
ylpyrrole 5h was prepared from ethyl 6-oxohexanoate (1e) and
2b. The cyclocondensation of dilithiated ethyl 2-methylacetoac-
etate (1f) with 2b gave 4i, which was transformed into the
pyrrole 5i by treatment with TFA. The pyrroles 5j and 5l were
prepared based on reactions of dilithiated ethyl 2-benzylac-
etoacetate (1g) and 2-acetyl-γ-butyrolactone (1h) with 2b.
The cyclocondensation of the dianions of ethyl cycloalkanone-
2-carboxylates 1i-k with 2a,b afforded 4m-p, which were
(13) (a) Montforts, F.-P.; Schwartz, U. M.; Mai, G. Liebigs Ann. Chem.
1990, 1037. (b) Eguchi, S.; Matsushita, Y.; Yamashita, K. Org. Prep.
Proced. Int. 1992, 24, 211. (c) Eguchi, S.; Okano, T. J. Synth. Org. Chem.,
Jpn. 1993, 51, 203. (d) Wamhoff, H.; Richard, G.; Stoelben, S. AdV.
Heterocycl. Chem. 1995, 64, 159.
(14) Reviews of aza-Wittig reactions: (a) Molina, P.; Viliplana, M. J.
Synthesis 1994, 1197. (b) Eguchi, S.; Okano, T.; Okawa, T. Recent Res.
DeV. Org. Chem. 1997, 337; Chem. Abstr. 1999, 130, 252510. (c) Fresneda,
P. M.; Molina, P. Synlett 2004, 1. (d) Eguchi, S. ArkiVoc 2005, ii, 98.
(15) Langer, P.; Freifeld, I. Chem. Commun. 2002, 2668.
4966 J. Org. Chem., Vol. 71, No. 13, 2006