C O M M U N I C A T I O N S
Scheme 2. Enantioselective Syntheses of Rocaglamide and
Rocaglaol
photocycloaddition process and synthesis of other rocaglamide
derivatives are currently in progress and will be reported in due
course.
Acknowledgment. We thank the National Institutes of Health
(GM-073855), Bristol-Myers Squibb, and Merck Research Labo-
ratories for research support, Professor Viresh Rawal (The Uni-
versity of Chicago) and Professor Guilford Jones (Boston Univer-
sity) for helpful discussions, and Dr. Emil Lobkovsky (Cornell)
for X-ray crystal structure analyses. D.J.O. thanks the NSF for
financial support.
Figure 1. Alternate TADDOL conformers determined by infrared spec-
troscopy and X-ray analysis.
Supporting Information Available: Experimental procedures and
characterization data for all new compounds (PDF), including X-ray
crystal structure coordinates and files in CIF format. This material is
References
Figure 2. Proposed arrangement for enantioselective photocycloaddition.
(1) (a) Proksch, P.; Edrada, R.; Ebel, R.; Bohnenstengel, F. I.; Nugroho, B.
W. Curr. Org. Chem. 2001, 5, 923-938. Synthetic studies: (b) Kraus,
G. A.; Sy, J. O. J. Org. Chem. 1989, 54, 77-83. (c) Trost, B. M.;
Greenspan, P. D.; Yang, B. V.; Saulnier, M. G. J. Am. Chem. Soc. 1990,
112, 9022-9024.
phenanthrene ring. The relevance of this conformer in solution was
further confirmed by infrared spectroscopy (Figure 1), in which
the hydroxyl stretching frequencies corresponding to intramolecular
hydrogen bonding between the two hydroxyl11 groups (additive 7g)
are red-shifted in comparison to frequencies for the weakly
hydrogen-bonded additive 7e.
(2) (a) Roshal, A. D.; Grigorovich, A. V.; Droshenko, A. O.; Pivovarenko,
V. G.; Demchenko, A. P. J. Phys. Chem. A 1998, 102, 5907-5914. (b)
Bader, A.; Ariese, F.; Gooijer, C. J. Phys. Chem. A 2002, 106, 2844-
2849 and references therein.
(3) Gerard, B.; Jones, G., II; Porco, J. A., Jr. J. Am. Chem. Soc. 2004, 126,
13620-13621.
(4) Le Gourrierec, D.; Ormson, S. M.; Brown, R. G. Prog. React. Kinet. 1994,
19, 211-275.
(5) (a) McDougal, N. T.; Schaus, S. E. J. Am. Chem. Soc. 2003, 125, 12094-
12095. (b) Thadani, A, N.; Stankovic, A. R.; Rawal, V. H. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 5846-5850. (c) Nugent, B. N.; Yoder, R.
A.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 3418-3419. (d)
Yamamoto, H.; Momiyama, N. J. Am. Chem. Soc. 2005, 127, 1080-
1081. (e) Bhasker, V.; Gravel, M.; Rawal, V. Org. Lett. 2005, 7, 5657-
5660. (f) Yoon, T. P.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44,
466-468. (g) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006,
45, 1520-1543.
To explain the enantioselectivity observed in the [3 + 2]
photocycloaddition, we propose an assembly involving oxidopy-
rylium 2 and TADDOL 7g (Figure 2). The well-defined arrange-
ment of TADDOL may form a hydrogen bond with the oxidopy-
rylium via its free hydroxyl group, which may stabilizes the dipole.8
A computational study (B3LYP/6-31+G*)9 of the oxidopyrylium
intermediate indicates a high degree of electron density on the
phenoxide oxygen, suggesting this site as a strong point of
interaction for hydrogen bonding. The stereofacial approach of the
dipolarophile may be controlled by shielding of the aryl group at
the pseudoequatorial position of the seven-membered ring formed
by an intramolecular H-bond between the two hydroxyl groups.5b
Using the optimized conditions for enantioselective photocy-
cloaddition (entry 11), we achieved the synthesis of the natural
products rocaglaol 9 and rocaglamide 101c (Scheme 2). By using 4
as dipolarophile and 7g as additive, we obtained rocaglaol12 9 in
96% ee after decarboxylation13 and reduction of intermediate 11.9
Rocaglamide 10 could also be accessed from 11 via reduction,
hydrolysis, and amide bond formation (94% ee).
(6) (a) Grosch, B.; Orlebar, C. N.; Hertdweck, E.; Massa, W.; Bach, T. Angew.
Chem., Int. Ed. 2003, 42, 3693-3696. (b) Legrand, S.; Luukinen, H.;
Isaksso, R.; Kipela¨inen, I.; Lindstro¨m, M.; Nicholls, I. A.; Unelius, C. R.
Tetrahedron: Asymmetry 2005, 16, 635-640. (c) Bauer, A.; Westkaemper,
F.; Grimme, S.; Bach, T. Nature 2005, 436, 1139-1140. (d) Tanaka, K.;
Fujiwara, T. Org. Lett. 2005, 7, 1501-1503. (e) Wessig, P.; Angew. Chem.,
Int. Ed. 2006, 45, 2168-2171.
(7) See Supporting Information for complete experimental details.
(8) (a) Lei, X.; Johnson, R. P.; Porco, J. A., Jr. Angew. Chem., Int. Ed. 2003,
42, 2913-3917 and references therein.
(9) (a) Quadrelli, P.; Fassardi, V.; Cardarelli, A.; Caramella, P. Eur J. Org.
Chem. 2002, 13, 2058-2065. (b) Adembri G.; Paoli M. L.; Sega A. J.
Chem. Res. 2003, 3, 126-127.
(10) Irurre, J.; Alonso-Alija, C.; Piniella, J. F.; Alvarez-Larena, A. Tetrahe-
dron: Asymmetry 1992, 3, 1591-1596.
(11) (a) Beck, A. K.; Bastani, B.; Plattner, D. A.; Petter, W.; Seebach, D.;
Braunschweiger, H.; Gysi, P.; LaVeccia, L. Chimia 1991, 45, 238-244.
(b) Seebach, D.; Daninden, R.; Marti, R. E.; Beck, A. K.; Plattner, D. A.
Kuhnle, F. N. M. J. Org. Chem. 1995, 60, 1788-1799.
In conclusion, we have developed an enantioselective synthesis
of the rocaglamides and related natural products. The key strategy
involves enantioselective dipolar cycloaddition of an oxidopyrylium
species derived from excited state intramolecular proton transfer
of 3-hydroxyflavones using specifically functionalized TADDOL
derivatives as chiral Brønsted acids. Further applications of the
(12) Synthetic studies: (a) Diedrichs, N.; Ragot, J, P.; Thede, K. Eur J. Org.
Chem. 2005, 9, 1731-1735. For biological activity, see: (b) Fahrig, T.;
Gerlach, I.; Horvath, E. Mol. Pharm. 2005, 67, 1544-1555.
(13) Greene, A. E.; Cruz, A.; Crabbe, P. Tetrahedron Lett. 1976, 2707-2708.
JA062621J
9
J. AM. CHEM. SOC. VOL. 128, NO. 24, 2006 7755