C O M M U N I C A T I O N S
glassy end blocks occurred under living conditions. Excellent
mechanical properties were measured on these SBS triblock
samplessespecially on those containing small polystyrene end
blocks (wt % (PS) < 35%)swith ultimate tensile strength higher
than 30 MPa and elongation at a break of 1000% (see Table 2 in
Supporting Information).
In summary, the halogen-lithium exchange reaction has been
successfully applied to generate a new dicarbanionic initiator from
a dibromoaryl compound. The presence of a C15 side alkyl chain
in the dibromo precursor is essential to the solubility of the
dilithiated initiator in apolar solvent. This is the first example of
dilithiated species initiating efficiently anionic polymerization in
absence of additive and affording well-defined polybutadiene
telechelics with a high percentage of 1,4-units (91%). Accordingly,
SBS triblock copolymers with remarkable ultimate tensile strength
and elongation at break could eventually be obtained, and in this
way, a long-standing issue faced by the industry of styrenic
thermoplastic elastomers could be sorted out.
Figure 1. 1H NMR spectrum (CD2Cl2, 400 MHz) of a R,ω-dihydroxy-
terminated polybutadiene.
Table 1. Characterization of Polystyrene, Polybutadiene, and SBS
Samples Synthesized from 1′ as Difunctional Initiatora
Microstructure (%)d
Mn
(g/mol)b
Mn(expected)
(g/mol)c
b
sample
Mw/Mn
1,4-cis
1,4-trans
1,2
Acknowledgment. The authors thank CNRS, the French
S
S
B
B
B
B
B
SBS
11400
43800
2100
1.15
1.13
1.2
1.13
1.07
1.08
1.1
12000
44000
2000
Ministry of Research, and CSIR for support of this research.
Supporting Information Available: Experimental details for the
synthesis and the characterization of the initiator, homopolymers, and
block copolymers. This material is available free of charge via the
38
39
39
40
41
41
47
47
47
50
50
50
15
14
14
10
9
6200
7000
16600
51900
67400
110900
17000
52000
70000
110000
1.2
9
References
a Polymerization of butadiene was initiated in cyclohexane with 1′ ([Li+]
) 5.3 × 10-2 M). b Determined by SEC using a refractometric detector;
0.55 was the conversion factor used for the determination of the molar mass
of B samples. c Mn(expected) ) Mbutadiene × ([butadiene]/[-PhLi]) × 2.
d Calculated by 1H and 13C NMR (see Figure S8 in Supporting Information).
(1) (a) Szwarc, M. Nature 1956, 178, 1168. (b) Szwarc, M.; Levy, M.;
Milkovich, R. J. Am. Chem. Soc. 1956, 78, 2656-2657.
(2) (a) Morton, M. Anionic Polymerization: Principle and Practice; Academic
Press: New York, 1983. (b) Hsieh, H. L.; Quirk, R. P. Anionic
Polymerization; Marcel Dekker Inc.: New York, 1996.
(3) (a) Foss, R. P.; Jacobson, H. W.; Sharkey, W. H. Macromolecules 1977,
10, 287. (b) Beinert, G.; Lutz, P.; Franta, E.; Rempp, P. Makromol. Chem.
1978, 179, 551. (c) Cameron, G.; Buchan, G. M. Polymer 1979, 20, 1129.
(d) Lutz, P.; Franta, E.; Rempp, P. Polymer 1982, 23, 1953. (e)
Bandermann, F.; Speikamp, H. D.; Weigel, L. Makromol. Chem. 1985,
186, 2017.
(4) (a) Yu, Y. S.; Je´roˆme, R.; Fayt, R.; Teyssie´, P. Macromolecules 1994,
27, 5957. (b) Yu, Y. S.; Dubois, P.; Je´roˆme, R.; Teyssie´, P. Macromol-
ecules 1996, 29, 1753. (c) Yu, Y. S.; Dubois, P.; Je´roˆme, R.; Teyssie´, P.
Macromolecules 1996, 29, 2738. (d) Yu, Y. S.; Dubois, P.; Je´roˆme, R.;
Teyssie´, P. Macromolecules 1996, 29, 6090.
(5) (a) Hofmans, J.; Maeseele, L.; Wang, G.; Janssens, K.; Van Beylen, M.
Polymer 2003, 44, 4109. (b) Wang, G.; Van Beylen, M. Polymer 2003,
44, 6205. (c) Hofmans, J.; Van Beylen, M. Polymer 2005, 46, 303.
(6) (a) Tung, L. H.; Lo, G. Y.-S.; Beyer, D. E. Macromolecules 1978, 11,
617. (b) Bredeweg, C. J.; Gatzke, A. L.; Lo, G. Y. S.; Tung, L. H.
Macromolecules 1994, 27, 2225. (c) Lo, G. Y. S.; Otterbacher, E. W.;
Gatzke, A. L.; Tung, L. H. Macromolecules 1994, 27, 2233. (d) Lo, G.
Y. S.; Otterbacher, E. W.; Pews, R. G.; Tung, L. H. Macromolecules 1994,
27, 2241. (e) Tung, L. H.; Lo, G. Y. S. Macromolecules 1994, 27, 1680.
(f) Tung, L. H.; Lo, G. Y. S. Macromolecules 1994, 27, 2219.
(7) (a) Leitz, E.; Hocker, H. Makromol. Chem. 1983, 184, 1893. (b) Young,
R. N.; Quirk, R. P.; Fetters, L. J. AdV. Polym. Sci. 1984, 56, 24. (c) Quirk,
R. P.; Ma, J.-J. Polym. Int. 1991, 24, 197. (d) Broske, A. D.; Huang, T.
L.; Allen, R. D.; Hoover, J. M. In Recent AdVances in Anionic
Polymerization; Hogen-Esch, T. E., Smid, J., Eds.; Elsevier: New York,
1986; Vol. 363.
<1.1) reflects a rate of initiation by 1′ comparable to that of
propagation (see Supporting Information). The structure of the
difunctional polymer formed could be established by 1H NMR using
R,ω-dihydroxy telechelic polybutadiene samples of low degrees of
polymerization (Figure 1). From the ratio of the integration values
due to the signal of the aromatic protons of the difunctional initiator
(δ ) 6.5-7.5 ppm) to that of -CH2-OH chain ends (δ ) 3.7
ppm), functionality values close to 2 were obtained for the
polybutadiene telechelics. The microstructure of the polybutadiene
samples determined by 1H and 13C NMR spectroscopy demonstrated
a high percentage (86-91%) of 1,4-units (half constituted of 1,4-
cis and 1,4-trans) (see Table 1), which is generally the case for
polybutadiene synthesized in apolar solvents using butyllithium as
initiator.2
Next, SBS triblock copolymers were derived by sequential
anionic polymerization of butadiene and styrene with 1′ as initiator
(Scheme 1). The initiation of styrene by polybutadienyllithium being
slow, it was necessary to dilute further the reaction medium with
fresh cyclohexane and some THF (cyclohexane/THF, 100/1 in
volume). By taking an aliquot before the introduction of styrene,
the formation of the SBS samples could be easily followed by SEC
(see Figure S7 in Supporting Information).
(8) (a) Fetters, L. J.; Kamienski, W.; Morrison, C.; Young, R. N. Macro-
molecules 1979, 12, 345. (b) Guyot, P.; Favier, J. C.; Uytterhoeven, H.;
Fontanille, M.; Sigwalt, P. Polymer 1981, 22, 1724. (c) Guyot, P.; Favier,
J. C.; Fontanille, M.; Sigwalt, P. Polymer 1982, 23, 73. (d) Obriot, I.;
Favier, J. C. Polymer 1987, 28, 2093.
(9) (a) Fetters, L. J.; Morton, M. Macromolecules 1969, 2, 453. (b) Nugay,
T.; Kucukyavuz, S. Polym. Int. 1992, 29, 195. (c) Hsieh, H. C. C.; Kao,
H. C.; Cheng, D. O.; Tsiang, R. C. C.; Huang, D. C. Macromolecules
1995, 28, 4383.
The absolute molar masses of the SBS triblock copolymers were
(10) Matmour, R.; Lebreton, A.; Tsitsilianis, C.; Kallitsis, I.; He´roguez, V.;
Gnanou, Y. Angew. Chem., Int. Ed. 2005, 44, 284.
1
deduced by H NMR spectroscopy knowing that of their poly-
(11) Gnanou, Y.; Matmour, R.; More, A. S.; Wadgaonkar, P. P. Patent
Application No. 0479DEL2006.
(12) (a) Suresh, K. I.; Kishanprasad, V. S. Ind. Eng. Chem. Res. 2005, 44,
4504. (b) Luby, M. C.; Thachil, E. T. Designed Monomers and Polymers
2000, 3, 123.
(13) More, A. S.; Wadgaonkar, P. P. Novel 1-Bromo-4-(4′-bromophenoxy)-
2-pentadecylbenzene and Preparation Thereof. WO Patent Application No.
PCT/IN05/00391, November 11, 2005.
butadiene precursor from the SEC analysis (see Supporting
Information). In all cases, narrow molar mass distributions were
observed either for the polybutadiene precursor or for the triblock
copolymer structure with a complete consumption of the poly-
butadiene precursor after polymerization of styrene as attested by
SEC (see Supporting Information); this demonstrates that the growth
of either the polybutadiene middle block or the two polystyrene
JA062695V
9
J. AM. CHEM. SOC. VOL. 128, NO. 25, 2006 8159