tion to generate the R-metalloimine was the main reaction
pathway instead of nucleophilic addition.
Scheme 3. NMR Monitoring of Hemiaminal Formation
The synthesis of an N-phosphinoylketimine using the Stec
reaction6 was accomplished in moderate to good yields from
acetophenone (Scheme 2).7
Scheme 2. Synthesis of N-Phosphinoylketimines
equiv of ketone). Although we could detect significant
quantities (up to 10%) of imine 4b by NMR monitoring of
the reaction, all of our attempts to isolate it from this reaction
mixture were unsuccessful, since it underwent rapid hy-
drolysis back to ketone 6b upon workup. However, the latter
was recycled in all of the reactions. Hemiaminal 10b was a
convenient starting material and surrogate for imine 4b
because it could be isolated as a colorless, air-stable and easy
to manipulate solid. Furthemore, previous results from our
laboratory established that ethylzinc ethoxide (the possible
byproduct resulting from the hemiaminal decomposition into
the imine) was a compatible additive in the copper-catalyzed
nucleophilic addition chemistry.9
However, when these conditions were applied to trifluoro-
acetophenone, only low yields of imine 4a were observed.8
A screening of several Lewis acids to mediate the condensation
between R,R,R-trifluoro-4-bromoacetophenone (6b) and P,P-
diphenyl phosphinamide (8) did not lead to any improvement
in the yield of 4b. However, hemiaminal 10b was obtained
when Ti(OEt)4 was used as the Lewis acid (Scheme 3). 19F
NMR monitoring of the reaction indicated that when 6b
(-72.3 ppm) was mixed with 8 and Ti(OEt)4, 9b was rapidly
formed (broad singlet between -80.5 and -81.5 ppm) along
with residual ketone. The integration of this species (9b)
slowly decreased over time, forming in its place hemiaminal
10b (-78.2 ppm) and a small amount of imine 4b (-70.8
ppm). Although this transformation was extremely slow and
the various compounds were in equilibrium, only a small
amount of imine 4b was formed (after 4 days and using 3
The isolated yield of hemiaminals 10a-10f from various
trifluoromethyl ketones ranged between 47% and 63% (Table
1).10 We envisioned that hemiaminals 10 could be used to
(2) (a) Bravo, P.; Capelli, S.; Meille, S. V.; Viani, F.; Zanda, M.Tetrahe-
dron: Asymmetry 1994, 5, 2009. (b) Bravo, P.; Capelli, S.; Meille, S. V.;
Seresini, P.; Volonterio, A.; Zanda, M. Tetrahedron: Asymmetry 1996, 7,
2321. (c) Bravo, P.; Crucianelli, M.; Vergani, B.; Zanda, M. Tetrahedron
Lett. 1998, 39, 7771. (d) Ishii, I.; Miyamoto, F.; Higashiyama, K.; Mikami,
K. Tetrahedron Lett. 1998, 39, 1199. (e) Bravo, P.; Fustero, S.; Guidetti,
M.; Volonterio, A.; Zanda, M. J. Org. Chem. 1999, 64, 8731. (f) Crucianelli,
M.; Bravo, P.; Arnone, A.; Corradi, E.; Meille, S. V.; Zanda, M. J. Org.
Chem. 2000, 65, 2965. (g) Asensio, A.; Bravo, P.; Crucianelli, M.; Farina,
A.; Fustero, S.; Soler, J. G.; Meille, S. V.; Panzeri, W.; Viani, F.; Volonterio,
A.; Zanda, M. Eur. J. Org. Chem. 2001, 1449. (h) Enders, D.; Funabiki, K.
Org. Lett. 2001, 3, 1575. (i) Surya Prakash, G. K.; Mandal, M.; Olah, G.
A. Angew. Chem., Int. Ed. 2001, 40, 589. (j) Surya Prakash, G. K.; Mandal,
M.; Olah, G. A. Org. Lett. 2001, 3, 2847. (k) Crucianelli, M.; De Angelis,
F.; Lazzaro, F.; Malpezzi, L.; Volonterio, A.; Zanda, M. J. Fluorine Chem.
2004, 125, 573. (l) Gosselin, F.; Roy, A.; O’Shea, P. D.; Chen, C.; Volante,
R. P. Org. Lett. 2004, 6, 641. (m) Wang, H.; Zhao, X.; Li, Y.; Lu, L. Org.
Lett. 2006, 8, 1379.
Table 1. Synthesis of Hemiaminals 10a-10f13
entry
Ar (ketone)
Ph (6a)
yield (%)
product
1
2
3
4
5
6
47
56
53
46
51
63
10a
10b
10c
10d
10e
10f
4-BrC6H4 (6b)
3-MeC6H4 (6c)
4- MeC6H4 (6d)
2-naphthyl (6e)
4-ClC6H4 (6f)
(3) For a catalytic asymmetric reduction of trifluoroketimines: Gosselin,
F.; O’Shea, P. D.; Roy, S.; Reamer, R. A.; Chen C.; Volante R. P. Org.
Lett. 2005, 7, 355.
(4) (a) Fujihara, H.; Nagai, K.; Tomioka, K. J. Am. Chem. Soc. 2000,
122, 12055. (b) Hayashi, T.; Ishigedani, M. J. Am. Chem. Soc. 2000, 122,
976. (c) Porter, J. R.; Traverse, J. F.; Hoveyda, A. H.; Snapper, M. L. J.
Am. Chem. Soc. 2001, 123, 10409. (d) Dahmen, S.; Bra¨se, S. J. Am. Chem.
Soc. 2002, 124, 5940.
(5) (a) Boezio, A. A.; Pytkowicz, J.; Coˆte´, A.; Charette, A. B. J. Am.
Chem. Soc. 2003, 125, 14260. (b) Boezio, A. A.; Charette, A. B. J. Am.
Chem. Soc. 2003, 125, 1692.
generate the corresponding imines in situ. This was con-
firmed by spectroscopically observing the formation of the
imine when diethylzinc was added to a solution of the pure
hemiaminal in CD2Cl2. Several other titanium-based Lewis
(6) Krzyzanowska, B.; Stec, W. J. Synthesis 1982, 270.
(9) Coˆte´, A.; Boezio, A. A.; Charette, A. B. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 5405.
(10) Trifluoromethyl ketones 6c and 6e were prepared according to
literature procedures: (a) Creary, X. J. Org. Chem. 1987, 52, 5026. (b)
Chong, J. M.; Mar, E. K. J. Org. Chem. 1991, 56, 893. Other ketones were
commercially available.
(7) (a) Masumoto, S.; Usuda, H.; Suzuki, M.; Kanai, M.; Shibasaki, M.
J. Am. Chem. Soc. 2003, 125, 5634. (b) Lipshutz, B. H.; Shimizu, H. Angew.
Chem., Int. Ed. 2004, 43, 2228.
(8) See also: Jennings, W. B.; O’Shea, J. H.; Schweppe, A. Tetrahedron
Lett. 2001, 42, 101.
2744
Org. Lett., Vol. 8, No. 13, 2006