C O M M U N I C A T I O N S
bicyclic spiroketal framework is established with complete stereo-
control over three centers and an alkene functional group in the
product that could be engaged in post-cyclization diastereoselective
transformations.
financial support. B.D.S. thanks Eli Lilly & Co. for a graduate
fellowship. L.M. thanks the German National Academic Foundation.
Supporting Information Available: Experimental procedures and
compound characterization data. This material is available free of charge
References
(1) (a) Clarke, P. A.; Santos, S. Eur. J. Org. Chem. 2006, 2045. (b) Faulkner,
D. J. Nat. Prod. Rep. 1998, 15, 113.
(2) For recent examples of pyran synthesis using tandem reactions, see the
following. Oxonia Cope-Prins: (a) Dalgard, J. E.; Rychnovsky, S. D. J.
Am. Chem. Soc. 2004, 126, 15662. (b) Jasti, R.; Anderson, C. D.;
Rychnovsky, S. D. J. Am. Chem. Soc. 2005, 127, 9939. Mukaiyama-
Michael: (c) Bolla, M. L.; Patterson, B.; Rychnovsky, S. D. J. Am. Chem.
Soc. 2005, 127, 16044. Alkyne-enone coupling/Michael addition: (d)
Trost, B. M.; Yang, H.; Wuitschik, G. Org. Lett. 2005, 7, 4761.
Cycloisomerization/hydroalkoxylation: (e) Genin, E.; Antoniotti, S.;
Michelet, V.; Geneˆt, J.-P. Angew. Chem., Int. Ed. 2005, 44, 4949.
Cyclization/addition: (f) Evans, P. A.; Cui, J.; Gharpure, S. J.; Hinkle,
R. J. J. Am. Chem. Soc. 2003, 125, 11456. Mukaiyama aldol/Prins: (g)
Kopecky, D. J.; Rychnovsky, S. D. J. Am. Chem. Soc. 2001, 123, 8420.
(3) For reviews concerning tandem reactions, see: (a) Posner, G. H. Chem.
ReV. 1986, 86, 831. (b) Ho, T.-L. Tandem Organic Reactions; Wiley-
Interscience: New York, 1992. (c) Hall, N. Science 1994, 266, 32. (d)
Tietze, L. F. Chem. ReV. 1996, 96, 115.
Importantly, the anomerically stabilized ketal14 is formed under
kinetic control, as indicated by the observation that resubjecting
the minor diastereomer 13 to the reaction conditions did not result
in isomerization to the major isomer 12. Additionally, subjecting
hemiacetal 4 or acetal 14 to the optimized reaction conditions in
the presence of alcohol 15 or water, respectively, led to no
equilibration of these two compounds (eq 8).
(4) (a) Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978. (b)
Grissom, J. W.; Kilingberg, D.; Huang, D.; Slattery, B. J. J. Org. Chem.
1997, 62, 603.
(5) For Au(III)-catalyzed generation and trapping of cationic intermediates,
see: (a) Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem.
Soc. 2003, 125, 10921. (b) Dyker, G.; Hildebrandt, D.; Liu, J.; Merz, K.
Angew. Chem., Int. Ed. 2003, 125, 10921. (c) Asao, N.; Sato, K.;
Menggenbateer; Yamamoto, Y. J. Org. Chem. 2005, 70, 3862. (d)
Barluenga, J.; Die´guez, A.; Ferna´ndez, A.; Rodr´ıguez, F.; Fan˜ana´s, F. J.
Angew. Chem., Int. Ed. 2006, 45, 2091.
(6) For some recent examples of alkyne activation by Au(I) complexes, see:
(a) Shi, X.; Gorin, D. J.; Toste F. D. J. Am. Chem. Soc. 2005, 127, 5802.
(b) Nieto-Oberhuber, C.; Lo´pez, S.; Echavarren, A. M. J. Am. Chem. Soc.
2005, 127, 6178. (c) Nieto-Oberhuber, C.; Lo´pez, S.; Munoz, M. P.;
Cardenas, D. J.; Bunel, E.; Nevado, C.; Echavarren, A. M. Angew. Chem.,
Int. Ed. 2005, 44, 6146. (d) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc.
2005, 127, 6962. (e) Nevado, C.; Echavarren, A. M. Chem.sEur. J. 2005,
11, 3155. (f) Markham, J. P.; Staben, S. T.; Toste, F. D. J. Am. Chem.
Soc. 2005, 127, 9708. (g) Mezailles, N.; Ricard, L.; Gagosz, F. Org. Lett.
2005, 7, 4133. (h) Antoniotti, S.; Genin, E.; Michelet, V.; Geneˆt, J.-P. J.
Am. Chem. Soc. 2005, 127, 9976. (i) Gorin, D. J.; Davis, N. R.; Toste, F.
D. J. Am. Chem. Soc. 2005, 127, 11260. (j) Johansson, M. J.; Gorin, D.
J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002. (k)
Buzas, A.; Gagosz, F. Org. Lett. 2006, 8, 515. (l) Genin, E.; Toullec, P.
Y.; Antoniotti, S.; Brancour, C.; Geneˆt, J.-P.; Michelet, V. J. Am. Chem.
Soc. 2006, 128, 3112.
(7) For allene activation by Au(I), see: (a) Zhang, L. J. Am. Chem. Soc. 2005,
127, 16804. (b) Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem.
Soc. 2005, 127, 10500. (c) Morita, N.; Krause, N. Angew. Chem., Int.
Ed. 2006, 45, 1897. For allene activation by Au(III), see: (d) Hashmi, A.
S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. Angew. Chem., Int. Ed. 2000,
39, 2285. (e) Hoffmann-Roder, A.; Krause, N. Org. Lett. 2001, 3, 2537.
(f) Morita, N.; Krause, N. Org. Lett. 2004, 6, 4121. (g) Kang, J.-E.; Lee,
E.-S.; Park, S. I.; Shin, S. Tetrahedron Lett. 2005, 46, 7431. (h) Zhou,
C.-Y.; Chan, P. W. H.; Che, C.-M. Org. Lett. 2006, 8, 325. For reviews
of additions to allenes, see: (i) Ma, S. Chem. ReV. 2005, 105, 2829. (j)
Bates, R. W.; Satcharoen, V. Chem. Soc. ReV. 2002, 31, 12.
(8) (a) Suhre, M. H.; Reif, M.; Kirsch, S. F. Org. Lett. 2005, 7, 3925. (b)
Binder, J. T.; Kirsch, S. F. Org. Lett. 2006, 8, 2151.
On the basis of these results, we envision two plausible pathways
for this transformation. Both initiate by Au(I) coordination to the
alkyne and addition of the pendant enol ether to afford cationic in-
termediate A (eq 1). In one case, intermolecular trapping of A by
water or alcohol generates the pyran directly, after protonation of the
vinyl gold intermediate. Alternatively, Grob-type fragmentation of
A to an allenic aldehyde, followed by 6-endo-trig addition of the
aldehyde, regenerates A, which can be trapped by water or alcohol.15
To investigate this hypothesis, propargyl vinyl ether 16 bearing a
pendant aldehyde was prepared. Subjecting 16 to the optimized
reaction conditions led to a 3.3:1.0 mixture of 18:19. Alternatively,
when dialdehyde 17 was subjected to the Au(I) catalyst, a 1.0:9.4
mixture of 18:19 was obtained. Taken together, these results suggest
a mechanism wherein fragmentation of A occurs at a rate slower
than, but competitive with, direct nucleophilic trapping (eq 9).
(9) Reaction in CH2Cl2 gave only allenyl aldehyde 2 even the presence of
water. THF and dioxane afforded the desired pyran in 14 and 4 h,
respectively. Reactions in DME returned only starting material.
(10) Gold(I)-catalyzed reaction of a terminal alkyne (Table 1, 5 R1 ) Ph-
(CH2)2, R2 ) H) afforded a 1:1.6:0.5 ratio of the desired dihydropyran:
furan:8aan unidentified aldehyde.
(11) Relative stereochemistry was ascertained through nOe analysis; see
Supporting Information for details.
(12) The enantiomeric excess of pyran 6f was determined after in situ reduction
to the corresponding allylic alcohol (see Supporting Information for
details).
(13) (a) Mead, K. T.; Brewer, B. N. Curr. Org. Chem. 2003, 7, 227. (b) Perron,
F.; Albizati, K. F. Chem. ReV. 1989, 89, 1617. (c) Vaillancourt, V.; Pratt,
N. E.; Perron, F.; Albizati, K. F. In Total Synthesis of Natural Products;
Apsimon, J., Ed.; Wiley: New York, 1992; Vol. 8, p 533. (d) Boivin, T.
L. B. Tetrahedron 1987, 43, 3309.
(14) (a) Deslongchamps, P.; Rowan, D. D.; Pothier, N.; Sauve, T.; Saunders,
J. K. Can. J. Chem. 1981, 59, 1105. (b) Pothier, N.; Goldstein, S.;
Deslongchamps, P. HelV. Chim. Acta 1992, 75, 6.
(15) An alternative mechanism in which gold(I) catalyzes the addition of the
hemiacetal, not the aldehyde, to the allene is also possible. See: (a) Asao,
N.; Nogami, T.; Takahashi, K.; Yamamoto, Y. J. Am. Chem. Soc. 2002,
124, 764. (b) Nilsen, N. O.; Skattebøl, L.; Stenstrøm, Y. Acta Chem. Scand.
B 1987, 459.
In conclusion, we have developed a gold(I)-catalyzed method
for the stereocontrolled synthesis of 2-hydroxy-3,6-dihydropyrans
from propargyl vinyl ethers. This reaction is amenable to the
synthesis of spirocyclic compounds from appropriately function-
alized precursors. Efforts aimed at elucidating the mechanism of
this transformation and applications of this methodology in natural
product synthesis are ongoing and will be reported in due course.
Acknowledgment. We gratefully acknowledge the University
of California, Berkeley, NIHGMS (R01 GM073932-01), Merck
Research Laboratories, Bristol-Myers Squibb, Amgen Inc., DuPont,
GlaxoSmithKline, Eli Lilly & Co., Pfizer, and AstraZeneca for
JA061344D
9
J. AM. CHEM. SOC. VOL. 128, NO. 25, 2006 8133