Communication
H.-Y. Xu, G.-L. Yan, Y. Han, X.-J. Wang, Chin. J. Nat. Med. 2014, 12, 401–
406.
F. O'Hara, D. G. Blackmond, P. S. Baran, J. Am. Chem. Soc. 2013, 135,
12122–12134.
[20] A. Enhsen, W. Kramer, G. Wess, Drug Discovery Today 1998, 9, 409–418.
[21] S. D. Wexner, D. E. Beck, T. H. Baron, R. D. Fanelli, N. Hyman, B. Shen, K. E.
Wasco, Gastrointest. Endosc. 2006, 63, 894–909.
[23] For instance: a) S. France, D. J. Guerin, S. J. Miller, T. Lectka, Chem. Rev.
2003, 103, 2985–3012; b) S. France, A. Weatherwax, A. E. Taggi, T. Lectka,
Acc. Chem. Res. 2004, 37, 592–600; c) D. H. Paull, C. J. Abraham, M. T.
Scerba, T. Lectka, Acc. Chem. Res. 2008, 41, 655–663; d) D. H. Paull, A.
Weatherwax, T. Lectka, Tetrahedron 2009, 65, 6771–6803.
[3]
[4]
a) F. Minisci, R. Bernadi, F. Bertini, R. Galli, M. Perchinunno, Tetrahedron
1971, 27, 3575–3580; b) F. Minisci, E. Vismara, F. Fontana, Heterocycles
1989, 28, 489–519; c) F. Minisci, F. Fontana, E. Vismara, J. Heterocycl.
Chem. 1990, 27, 79–96; d) C. J. Cowden, Org. Lett. 2003, 5, 4497–4499;
e) P. B. Palde, B. R. McNaughton, N. T. Ross, P. C. Gareiss, C. R. Mace, R. C.
Spitale, B. L. Miller, Synthesis 2007, 15, 2287–2290.
a) F. Minisci, E. Vismara, F. Fontana, J. Org. Chem. 1989, 54, 5224–5227;
b) J. A. Murphy, M. S. Sherburn, Tetrahedron Lett. 1990, 31, 1625–1628;
c) J. A. Murphy, M. S. Sherburn, Tetrahedron Lett. 1990, 31, 3495–3496;
d) F. Minisci, F. Fontana, G. Pianese, Y. M. Yan, J. Org. Chem. 1993, 58,
4207–4211; e) M. A. J. Duncton, M. A. Estiarte, R. J. Johnson, M. Cox,
D. J. R. O'Mahony, W. T. Edwards, M. G. Kelly, J. Org. Chem. 2009, 74,
6354–6357.
a) Y. Fujiwara, V. Domingo, I. B. Seiple, R. Gianattassio, M. D. Bel, P. S.
Baran, J. Am. Chem. Soc. 2011, 133, 3292–3295; b) G. A. Molander, V.
Colombel, V. A. Braz, Org. Lett. 2011, 13, 1852–1855.
Y. Fujiwara, J. A. Dixon, F. O'Hara, E. D. Funder, D. D. Dixon, R. A. Rodri-
guez, R. D. Baxter, B. Herlé, N. Sach, M. R. Collins, Y. Ishihara, P. S. Baran,
Nature 2012, 492, 95–99.
[5]
[24] For a review on manganese(III) chemistry, see: B. B. Snider, Chem. Rev.
1996, 96, 339–363.
[25] We draw an analogy of the proposed ring-opening step to the proposed
manganese(IV) oxide oxidation of alcohols mechanism; however, in this
system, C–C cleavage occurs to relieve ring strain and produce an alkyl
radical, as opposed to H-atom abstraction. For reports on the mecha-
nism of alcohol oxidation, see: R. J. Gritter, G. D. Dupre, T. J. Wallace,
Nature 1964, 202, 179–181, and references therein.
[6]
[7]
[8]
[26] V. W. Bowry, K. U. Ingold, J. Am. Chem. Soc. 1992, 114, 4992–4996.
[27] For an in-depth mechanistic study on this topic, see: C. R. Pitts, S. Bloom,
R. Woltornist, D. J. Auvenshine, L. R. Ryzhkov, M. A. Siegler, T. Lectka, J.
Am. Chem. Soc. 2014, 136, 9780–9791. For applications, see: a) M. Rueda-
Becerril, C. C. Sazepin, J. C. T. Leung, T. Okbinoglu, P. Kennepohl, J.-F.
Paquin, G. M. Sammis, J. Am. Chem. Soc. 2012, 134, 4026–4029; b) S.
Bloom, C. R. Pitts, D. Miller, N. Haselton, M. G. Holl, E. Urheim, T. Lectka,
Angew. Chem. Int. Ed. 2012, 51, 10580–10583; Angew. Chem. 2012, 124,
10732; c) S. Bloom, C. R. Pitts, R. Woltornist, A. Griswold, M. G. Holl, T.
Lectka, Org. Lett. 2013, 15, 1722–1724; d) S. Bloom, S. A. Sharber, M. G.
Holl, J. L. Knippel, T. Lectka, J. Org. Chem. 2013, 78, 11082–11086; e) Y.
Amaoka, M. Nagamoto, M. Inoue, Org. Lett. 2013, 15, 2160–2163; f) J.-B.
Xia, C. Zhu, C. Chen, J. Am. Chem. Soc. 2013, 135, 17494–17500; g) S.
Bloom, J. L. Knippel, T. Lectka, Chem. Sci. 2014, 5, 1175–1178; h) C. R.
Pitts, B. Ling, R. Woltornist, R. Liu, T. Lectka, J. Org. Chem. 2014, 79, 8895–
8899; i) S. Bloom, M. McCann, T. Lectka, Org. Lett. 2014, 16, 6338–6341;
j) J.-B. Xia, C. Zhu, C. Chen, Chem. Commun. 2014, 50, 11701–11704; k)
J.-B. Xia, Y. Ma, C. Chen, Org. Chem. Front. 2014, 1, 468–472; l) C. W. Kee,
K. F. Chin, M. W. Wong, C.-H. Tan, Chem. Commun. 2014, 50, 8211–8214;
m) M. Rueda-Becerril, O. Mahe, M. Drouin, M. B. Majewski, J. G. West,
M. O. Wolf, G. M. Sammis, J.-F. Paquin, J. Am. Chem. Soc. 2014, 136, 2637–
2641; n) D. Cantillo, O. de Frutos, J. A. Rincon, C. Mateos, O. C. Kappe, J.
Org. Chem. 2014, 79, 8486–8490; o) S. D. Halperin, H. Fan, S. Chang, R. E.
Martin, R. Britton, Angew. Chem. Int. Ed. 2014, 53, 4690–4693; Angew.
Chem. 2014, 126, 4778.
a) D. A. DiRocco, K. Dykstra, S. Krska, P. Vachal, D. V. Conway, M. Tudge,
Angew. Chem. 2014, 126, 4902–4906; b) N. Nishida, H. Ida, Y. Kuninobu,
M. Kanai, Nat. Commun. 2014, 5, 3387; c) J. Jin, D. W. C. MacMillan,
Angew. Chem. 2015, 127, 1585–1589; d) R.-J. Tang, L. Kang, L. Yang, Adv.
Synth. Catal. 2015, 357, 2055–2060.
[9]
S. Bloom, D. D. Bume, C. R. Pitts, T. Lectka, Chem. Eur. J. 2015, 21, 8060–
8063.
[10]
Note that non-heteroaromatic β-aryl carbonyl-containing products can
be accessed using cyclopropanols and palladium chemistry; see: a) D.
Rosa, A. Orellana, Chem. Commun. 2013, 49, 5420–5422; b) D. Rosa, A.
Nikolaev, N. Nithiy, A. Orellana, Synlett 2015, 26, 441–448. Also, note that
heteroaromatic β-aryl carbonyl-containing products can be accessed us-
ing conjugate addition chemistry; see: c) A. C. Spivey, L. Shukla, J. F.
Hayler, Org. Lett. 2007, 9, 891–894; d) X.-Q. Yu, Y. Yamamoto, N. Miyaura,
Synlett 2009, 6, 994–998; e) J.-L. Shih, T. S. Nguyen, J. A. May, Angew.
Chem. Int. Ed. 2015, 54, 9931–9935.
[11] Many catalytic methods for generating alkyl radicals for heterocycle alk-
ylation in the literature require typically a three- to ten-fold excess of a
sacrificial oxidant; see ref.[4–8]
[12] a) J. Jiao, L. X. Nguyen, D. R. Patterson, R. A. Flowers II, Org. Lett. 2007,
9, 1323–1326; b) H. Tsuchida, M. Tamura, E. Hasegawa, J. Org. Chem.
2009, 74, 2467–2475.
[28] Note that the β-fluorinated product is prone to dehydrofluorination
upon isolation; see ref.[9]
[13] a) A. J. Fatiadi, Synthesis 1976, 2, 65–104; b) R. J. K. Taylor, M. Reid, J.
Foot, S. A. Raw, Acc. Chem. Res. 2005, 38, 851–869; c) G. Tojo, M. Fernán-
dez, Oxidation of Alcohols to Aldehydes and Ketones, Springer, New York,
2006, pp. 290–309.
[29] a) E. V. Anslyn, D. A. Dougherty, Modern Physical Organic Chemistry, Uni-
versity Science Books, Sausalito, CA, 2006; b) E. M. Simmons, J. F. Hart-
wig, Angew. Chem. Int. Ed. 2012, 51, 3066–3072; Angew. Chem. 2012,
124, 3120.
[14] J. J. V. Eynde, F. Delfosse, A. Mayence, Y. Van Haverbeke, Tetrahedron
1995, 51, 6511–6516.
[15] J. Tauber, D. Imbri, T. Opatz, Molecules 2014, 19, 16190–16222.
[16] With some exceptions, most direct heterocycle alkylation reactions to
date require a threefold or higher excess of either the radical source or
the heterocycle.
[17] Note that obstructing the 3-position of pyridine may result in three re-
gioisomers. As the result is a decrease in yield of each individual isomer
(detrimental to synthetic utility), starting materials with this substitution
were not explored further in this work.
[18] a) A. R. Quesada, M. D. García Grávalos, J. L. Fernández Puentes, Br. J.
Cancer 1996, 74, 677–682; b) C. Bailly, Curr. Med. Chem. Anti-Cancer
Agents 2004, 4, 363–378; c) D. Pla, F. Albericio, M. Alvarez, Anti-Cancer
Agents Med. Chem. 2008, 8, 746–760.
[30] For some examples of similar kinetic isotope effects in other Minisci-
type reactions, see: a) Z. Shi, F. Glorius, Chem. Sci. 2013, 4, 829–833; b)
R. Xia, M.-S. Xie, H.-Y. Niu, G.-R. Qu, H.-M. Guo, Org. Lett. 2014, 16, 444–
447; c) J. Kan, S. Huang, J. Lin, M. Zhang, W. Su, Angew. Chem. Int. Ed.
2015, 54, 2199–2203; Angew. Chem. 2015, 127, 2227.
[31] a) N. Iwasawa, S. Hayakawa, M. Funahashi, K. Isobe, K. Narasaka, Bull.
Chem. Soc. Jpn. 1993, 66, 819–827; b) Y.-F. Wang, S. Chiba, J. Am. Chem.
Soc. 2009, 131, 12570–12572; c) Y.-F. Wang, K. K. Toh, E. P. Ng, S. Chiba,
J. Am. Chem. Soc. 2011, 133, 6411–6421.
[32] R. S. Varma, D. Kumar, Tetrahedron Lett. 1999, 40, 21–24.
[33] a) M. Moghadam, M. Naser-Esfahani, S. Tangestaninejad, V. Mirkhani, Bio-
org. Med. Chem. Lett. 2006, 16, 2026–2030; b) A. Saini, S. Kumar, J. S.
Sandhu, J. Sci. Ind. Res. 2008, 67, 95–111, and references cited therein.
[19] a) O. G. Kulinkovich, S. V. Sviridov, D. A. Vasilevski, Synthesis 1991, 3, 234;
b) O. G. Kulinkovich, Chem. Rev. 2003, 103, 2597–2632.
Received: November 6, 2015
Published Online: November 24, 2015
Eur. J. Org. Chem. 2016, 26–30
30
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim