C O M M U N I C A T I O N S
Scheme 3. Convertible Isonitriles
Scheme 6. Other Multicomponent Reactions of Convertible
Isonitriles
Despite the significantly modified odor properties of 8 and 10,
their reactivity does not seem to be compromised; they undergo
the classical multicomponent reactions of isonitriles. As convertible
isonitriles, they are far superior to isocyanocyclohexene, which we
have found difficult to prepare in quantities larger than a few
hundred milligrams, unstable on storage, and of vile odor. Conver-
sion of Ugi products derived from isocyanocyclohexene to esters
also requires more demanding reaction conditions than Ugi products
derived from 10. Studies of 10e have so far shown it stable at room
temperature under nitrogen. We have had no difficulty preparing
10e in batches as large as 5 g.
Scheme 4. A Conversion Reaction and Evidence about Its
Mechanism
Owing to their combination of two different functionalities having
distinctive odors, molecules 8 and 10 may also pose interesting
questions for theories of olfaction.
Supporting Information Available: Experimental descriptions and
characterization for key compounds. This material is available free of
Scheme 5. Test for Possible Intermediates in the Conversion
Reaction
References
(1) Ryu, I.; Sonoda, N.; Curran, D. P. Chem. ReV. 1996, 96, 177-194. Josien,
H.; Curran, D. P. Tetrahedron 1997, 53, 8881.
(2) Dixon, S.; Whitby R. J. in Titanium and Zirconium in Organic Synthesis;
Marek, I., Ed.; Wiley-VCH: Weinheim, Germany, 2003; p 86-109.
(3) Drenth, W.; Nolte, R. J. M. Acc. Chem. Res. 1979, 12, 30. Cornelissen,
J. J. L. M.; Donners, J. J. J. M.; de Gelder, R.; Graswinckel, W. S.;
Metselaar, G. A.; Rowan, A. E.; Sommerdijk, N. A. J. M.; Nolte, R. J.
M. Science 2001, 293, 676.
(4) Do¨mling, A. Curr. Opin. Chem. Biol. 2002, 6, 306-313.
(5) Ugi, I.; Fetzer, U.; Eholzer, U.; Knupfer, H.; Offermann, K. Angew. Chem.,
Int. Ed. Eng. 1965, 4, 472-484.
investigated by treatment of 18 with DMAD. Pyrrole 19 is obtained
in 58% yield, and 17 is obtained in 72% yield. For comparison,
Armstrong prepared 19 from the corresponding Ugi product of
1-isocyanocyclohexene in 63% yield. It is possible that the
formation of 17 occurs via simple methanolysis to 2-aminophenyl
toluate, which then cyclizes. Also possible is the intermediacy of
20 or 21, which could be strong acylating agents. To address their
potential involvement in the conversion reaction, three derivatives
of 10 with diverse para substituents were prepared (10e-g). An
electron-withdrawing group should accelerate the formation of 20
and an electron-donating group should accelerate the formation of
21, and thereby their conversion reactions (Scheme 5). Ugi products
22 were derived from 10e-g, and their conversions to 23 were
examined. When treated with HCl/MeOH at room temperature,
conversion of 22e to 23 requires 0.5 h, while 22g requires 1 h and
22f requires 2.5 h. These results suggest the possible involvement
of 21 in the conversion reaction.
(6) Atkinson, R. S.; Harger, M. J. P. J. Chem. Soc., Perkin Trans. 1 1974,
2619.
(7) Hofmann, A. W. Annalen 1868, 146, 107. Hofmann, A. W. Chem. Ber.
1870, 3, 767. Webster’s Revised Unabridged Dictionary: “carbamines
are liquids, usually colorless, and of unendurable odor”; Dorland’s Medical
Dictionary: “characterized by a disagreeable odor”.
(8) Zhao, H.; Ivic, L.; Otaki, J. M.; Hashimoto, M.; Mikoshiba, K.; Firestein,
S. Science 1998, 279, 237-242.
(9) Pinney, V. R., U.S. Pat. 6 352 032, March 5, 2002.
(10) (a) Fraser, R. R.; Mansour, T. S.; Savard, S. Can J. Chem. 1985, 63,
3505-3509. (b) Crowe, E.; Hossner, F.; Hughes, M. J. Tetrahedron 1995,
51, 8889-900. (c) Bayh, O.; Awad, H.; Mongin, F.; Hoarau, C.; Bischoff,
L.; Tre´court, F.; Que´guiner, G.; Marsais, F.; Blanco, F.; Abarca, B.;
Ballesteros, R. J. Org. Chem. 2005, 70, 5190-5196.
(11) (a) Hodges, J. C.; Patt, W. C.; Connolly, C. J. J. Org. Chem. 1991, 56,
449-452. (b) Dondoni, A.; Dall’Occo, T.; Fantin, G.; Fogagnolo, M.;
Medici, A.; Pedrini, P. J. Chem. Soc., Chem. Commun. 1984, 258-260.
(12) Whitney, S. E.; Rickborn, B. J. Org. Chem. 1991, 56, 3058-3063.
(13) Vedejs, E.; Luchetta, L. M. J. Org. Chem. 1999, 64, 1011-1014.
(14) Keating, T. A.; Armstrong, R. W. J. Am. Chem. Soc. 1996, 118, 2574-
2583. Other convertible isonitriles: Boehm, J. C.; Kingsbury, W. D. J.
Org. Chem. 1986, 51, 2307-2314. Linderman, R. J.; Binet, S.; Petrich,
S. R. J. Org. Chem. 1999, 64, 336-337. Correction: 1999, 64, 8058.
Lindhorst, T.; Bock, H.; Ugi, I. Tetrahedron 1999, 55, 7741. Kennedy,
A. L.; Fryer, A. M.; Josey, J. A. Org. Lett. 2002, 4, 1167-1170. Rikimaru,
K.; Yanagisawa, A.; Kan, T.; Fukuyama. T. A. Synlett 2004, 41-43.
(15) Gro¨bcke, K.; Weber, L.; Mehlin, F. Synlett 1998, 661. Lu, Y.; Zhang, W.
QSAR Comb. Sci. 2004, 23, 827-35.
Isonitriles 10 are suitable for other multicomponent reactions,
such as the Passerini reaction and the Gro¨bcke reaction of
2-aminopyridines with aldehydes,15 as exemplified in the products
24 and 25 (Scheme 6).
JA0644374
9
J. AM. CHEM. SOC. VOL. 128, NO. 36, 2006 11773