E. Cesarotti et al. / Tetrahedron: Asymmetry 18 (2007) 1278–1283
1283
3.7. Preparation of [Rh(COD)(R,R)-ZEDPHOS-6a]
References
1. (a) Kagan, H. B.; Dang, T. J. Chem. Soc., Chem. Commun.
1971, 481; (b) Kagan, H. B.; Dang, T. J. Am. Chem. Soc. 1972,
94, 6429; (c) Kagan, H. B. Chiral Ligands for Asymmetric
Catalysis. In Asymmetric Synthesis; Morrison, J. D., Ed.;
Academic Press: New York, 1985; Vol. 5, Chapter 1.
2. (a) Vinegard, B. D.; Knowels, W. S.; Sabacky, M. J.;
Bachman, G. L.; Weinkauff, D. J. J. Am. Chem. Soc. 1972,
99, 5946; (b) Knowels, W. S. Angew. Chem., Int. Ed. 2002, 41,
1998–2007.
The complex was prepared according to the literature pro-
cedure.10,12 31P NMR (300 MHz) (CDCl3) (ppm): 24.56 (d,
JPꢀP = 144 Hz).
3.8. Preparation of [Ru(g3-C3H5)2(R,R)-ZEDPHOS-6a]
and of [RuCl2(DMF)n(R,R)-ZEDPHOS-6a]
The complexes were prepared according to the literature
procedure.10,12
3. (a) Halpern, J. Asymmetric Catalytic Hydrogenation: Mech-
anism and Origin of Enantioselection. In Asymmetric Syn-
thesis; Morrision, J. D., Ed.; Academic Press: New York,
1985; Vol. 5, (b) Brown, J. M.; Maddox, P. J. J. Chem. Soc.,
Chem. Commun. 1987, 1276; (c) Brown, J. M.; Chaloner, P.
A.; Morris, G. A. J. Chem. Soc., Chem. Commun. 1983, 664;
(d) Brown, J. M.; Chaloner, P. A. J. Chem. Soc., Chem.
Commun. 1980, 344; (e) Brown, J. M.; Parker, D. J. Chem.
Soc., Chem. Commun. 1980, 342; (f) Burk, M. J.; Allen, J. G.;
Kiesman, W. F. J. Am. Chem. Soc. 1998, 120, 657; (g) Dwars,
3.9. General procedure of the asymmetric hydrogenation
In a Schlenk tube sealed under argon, the substrate was
added to the precatalyst followed by 20 ml of a choice sol-
vent. The solution was stirred for 30 min and then trans-
ferred to an autoclave with a cannula.
`
T.; Schmidt, U.; Fischer, C.; Grassert, I.; Kempe, R.; FroE
hlich, R.; Drauz, K.; Oehme, G. Angew. Chem., Int. Ed. 1998,
37, 2851; (h) Imamoto, T.; Watanabe, J.; Wada, Y.; Masuda,
H.; Yamada, H.; Tsuruta, H.; Matsukawa, S.; Yamaguchi,
K. J. Am. Chem. Soc. 1998, 120, 1635.
The stainless steel autoclave (200 ml), equipped with tem-
perature control and magnetic stirrer, was purged 5 times
with hydrogen. After the transfer of the reaction mixture,
the autoclave was pressurized. At the end, the autoclave
was vented and the mixture was analyzed by GC–MS,
NMR spectra and HPLC.
4. (a) Noyori, R. Angew. Chem., Int. Ed. 2002, 41, 2008–2022;
(b) Noyori, R. Asymmetric Catalysis. In Organic Synthesis; J.
Wiley & Sons: New York, 1994; (c) Miyashita, A.; Yasuda,
H.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R.
J. Am. Chem. Soc. 1980, 102, 7932; (d) Noyori, R.; Takaya,
H. Acc. Chem. Res. 1990, 23, 345.
5. (a) Schmid, R.; Cereghetti, M.; Heiser, B.; Shonholzer, P.;
Hansen, H. Helv. Chim. Acta 1988, 71, 897; (b) Schmid, R.;
Broger, E.; Crameri, Y.; Foricher, J.; Lalonde, M.; Muller,
R.; Scalone, M.; Zutter, U.; Cereghetti, M.; Schoettel, G.
Pure Appl. Chem. 1996, 68, 131.
3.10. X-ray crystal structure determination of PdCl2 (R,R)-
ZEDPHOS-6a
Crystal data. C30H30P2PdCl2, M = 629.78, monoclinic, a =
˚
9.3915(10), b = 14.3912(15), c = 20.5625(22) A, b =
3
˚
97.86(1)ꢁ, U = 2753.0(5) A , T = 294(2) K, space group
P21/c (No. 14), Z = 4, l = (Mo Ka) 1.002 mmꢀ1. 24,080
reflections (5413 unique, Rint = 0.049) were collected at
room temperature in the range 2.00 6 2h 6 52.06 ꢁ,
employing a partly twinned 0.14 · 0.05 · 0.03 mm crystal
mounted on a Siemens SMART CCD area-detector dif-
fractometer. Graphite monochromatized Mo Ka radiation
`
6. (a) Antognazza, P.; Sannicolo, F.; Benincori, T.; Brenna, E.;
Trimarco, L.; Cesarotti, E. J. Chem. Soc., Chem Commun.
`
1995, 685; (b) Cesarotti, E.; Antognazza, P.; Sannicolo, F.;
Benincori, T.; Brenna, E.; Trimarco, L.; Demartin, F.; Pilati,
T. J. Org. Chem. 1996, 61, 6244; (c) Cesarotti, E.; Benincori,
`
T.; Araneo, S.; Sannicolo, F. J. Org. Chem. 2000, 65, 2043.
7. Noyori, Ryoji Chem. Asian J. 2006, 1–2, 102–110.
8. (a) Chan, A. S. C.; Pluth, J. J.; Halpern, J. J. Am. Chem. Soc.
1980, 102, 5952; (b) Amstrong, S. K.; Brown, J. M.; Burk, M.
J. Tetrahedron Lett. 1993, 34, 879.
˚
(k = 0.71073 A) was used with the generator working at
45 kV and 40 mA.
9. (a) Kim, M. J.; Lee, I. S. J. Org. Chem. 1993, 58, 6483; (b)
Amador, M.; Ariza, X.; Garcia, J.; Sevilla, S. Org. Lett. 2002,
4, 4511.
10. Genet, J. P. Acc. Chem. Res. 2003, 36, 908–918.
11. (a) Kim, M. J.; Lee, I. S. J. Org. Chem. 1993, 58, 6483; (b)
Amador, M.; Ariza, X.; Garcia, J.; Sevilla, S. Org. Lett. 2002,
4, 4511; (c) Herges, R.; Hoock, C. Angew. Chem., Int. Ed.
Engl. 1992, 31, 1611.
Intensities were corrected for Lorentz-polarization effects
and empirical absorption correction (SADABS.13 The
structure was solved by direct methods (SIR-9714) and re-
2
fined on F o with the SHELXL-9715 programme (WinGX
suite16). All non-hydrogen atoms were refined with aniso-
tropic thermal parameters, while hydrogen atoms, located
`
on the DF maps, were allowed to rıde on their carbon atom.
Final R1 [wR2] values of 0.0928 [0.1347] on 3607 reflections
with I > 2r(I) [all data] and 318 parameters. The maximum
and minimum residual electron density on the final DF map
are 1.59 and ꢀ1.58 e A , respectively.
12. Mashima, K.; Kusano, K.; Sato, N.; Matsumura, Y.; Nozaki,
K.; Kumobayashi, H.; Sayo, N.; Hori, Y.; Ishizaki, T.;
Akutagawa, S.; Takaya, H. J. Org. Chem. 1994, 59, 3064–
3076.
13. SADABS Area-Detector Absorption Correction Program,
Bruker AXS Inc. Madison, WI, U.S.A., 2000.
14. Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.;
Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori,
G.; Spagna, R. J. Appl. Cryst. 1999, 32, 115.
3
˚
Crystallographic data (excluding structure factors) have
been deposited with the Cambridge Crystallographic Data
Centre as Supplementary Publication No. CCDC-640071.
These data can be obtained free of charge via www.ccdc.
Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223
336033; e-mail: deposit@ccdc.cam.ac.uk.
15. Sheldrick, G. M. SHELX97—Programs for Crystal Structure
Analysis (Release 97-2); University of Go¨ttingen: Germany,
1998.
16. Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837.