LETTER
Synthesis of Tetrahydrofuran Fragment
1179
stabilized ylide derived from Ph3P+MeBr– and KHMDS to In summary, we have established a new synthesis of the
furnish the vinyl epoxide 20 in 81% overall yield. We tetrahydrofuran fragment 23 of amphidinolides X and Y
–
found that oxidation of 17 with n-Pr4N+RuO4 (TPAP) and starting from the known chiral diol 11 in >96% ee.5 A
NMO12 in CH2Cl2 resulted in a mixture of the epoxy alde- vinyl-group-activated 5-endo cyclization of the epoxy
hyde due to epimerization, which could be suppressed alcohol 21 was successfully used to construct the tetra-
under the Swern conditions. The TIPS group in 20 was re- substituted tetrahydrofuran skeleton. In addition, the vinyl
moved by treating with excess n-Bu4NF in refluxing THF group in 23 can be converted into the alkyl boron com-
for 0.5 hour to form the epoxy alcohol 21 in 90% yield in pound 8 for coupling with other fragments in the total
diastereomerically pure form because the minor isomer synthesis of amphidinolides X and Y.
could be separated out by column chromatography. We
were delighted to find that treatment of 21 with a catalytic
amount of CSA in CH2Cl2 at –40 °C to room temperature
Acknowledgment
This work is supported in part by the research grants from The
National Natural Science Foundation of China (Grant No.
20432020) and Zhejiang University. W.-M. Dai is the recipient of
Cheung Kong Scholars Award of The Ministry of Education of
China. The authors thank Dr. Kwong Wah Lai and Dr. Yongqiang
Wang for their assistance in some experiments.
for 6 hours provided the desired tetrahydrofuran product
22 in 85% yield as a single isomer. Protection of the
secondary alcohol in 22 as the PMB ether gave 2313 in
68% yield. The stereochemistry of 23 was further con-
firmed by converting it to the known alcohol 244,14 via
hydroboration with BH3·SMe2 followed by standard oxi-
dative workup in alkaline solution in 60% overall yield.
The spectroscopic data of 24 and the sign of optical
rotation are identical to those reported in literature.4
References and Notes
(1) Kobayashi, J.; Tsuda, M. Nat. Prod. Rep. 2004, 21, 77.
(2) Tsuda, M.; Izui, N.; Shimbo, K.; Sato, M.; Fukushi, E.;
Kawabata, J.; Kobayashi, J. J. Org. Chem. 2003, 68, 9109.
(3) Tsuda, M.; Izui, N.; Shimbo, K.; Sato, M.; Fukushi, E.;
Kawabata, J.; Kkatsumata, K.; Horiguchi, T.; Kobayashi, J.
J. Org. Chem. 2003, 68, 5339.
(4) Total synthesis of amphidinolide X, see: Lepage, O.;
Kattnig, E.; Fürstner, A. J. Am. Chem. Soc. 2004, 126,
15970.
(5) (a) Corey, E. J.; Guzman-Perez, A.; Noe, M. C. J. Am. Chem.
Soc. 1995, 117, 10805. (b) For the 2-propyl homologue of 3,
see: Hayes, P. Y.; Kitching, W. J. Am. Chem. Soc. 2002, 124,
9718.
(6) Narayan, R. S.; Sivakumar, M.; Bouhle, E.; Borhan, B. Org.
Lett. 2001, 3, 2489.
OH
H
H
a, b
OTIPS
Me
OTIPS
Me
O
O
Me
Me
H
H
20
17
H
c
d
OH
O
H
(7) Johnson, R. A.; Sharpless, K. B. In Catalytic Asymmetric
Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York,
2000, 231.
Me
Me
21
(8) For a recent example of asymmetric homoallylic
epoxidation, see: (a) Makita, N.; Hoshino, Y.; Yamamoto,
H. Angew. Chem. Int. Ed. 2003, 42, 941. (b) See also:
Rossiter, B. E.; Sharpless, K. B. J. Org. Chem. 1984, 49,
3707.
Me
Me
H
H
O
O
e
Me
Me
(9) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102,
5974.
(10) Coxon, J. M.; Hartshorn, M. P.; Swallow, W. H. Aust. J.
Chem. 1973, 26, 2521.
HO
PMBO
H
H
22
23
22
Me
(11) For selected examples of other modes of epoxide ring-
opening cyclization, see: (a) Nakata, T.; Kishi, Y.
Tetrahedron Lett. 1978, 2745. (b) Nakata, N.; Schmid, G.;
Vranesic, B.; Okigawa, M.; Smith-Palmer, T.; Kishi, Y. J.
Am. Chem. Soc. 1978, 100, 2933. (c) Nicolaou, K. C.;
Brasad, C. V. C.; Somers, P. K.; Hwang, C.-K. J. Am. Chem.
Soc. 1989, 111, 5330. (d) Nicolaou, K. C.; Prasad, C. V. C.;
Somers, P. K.; Hwang, C.-K. J. Am. Chem. Soc. 1989, 111,
5335. (e) Mukai, C.; Ikeda, Y.; Sugimoto, Y.; Hanaoka, M.
Tetrahedron Lett. 1994, 35, 2179. (f) Fujiwara, K.;
Tokiwano, T.; Murai, A. Tetrahedron Lett. 1995, 36, 8063.
(g) Fujiwara, K.; Mishima, H.; Amano, A.; Tokiwano, T.;
Murai, M. Tetrahedron Lett. 1998, 39, 393. (h) Evans, P.
A.; Murthy, V. S. Tetrahedron Lett. 1999, 40, 1253.
(12) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P.
Synthesis 1994, 639.
14
HO
H
O
f
19R
Me
16S
17R
PMBO
H
24 (known)
Scheme 3 Reagents and conditions: a) (COCl)2, DMSO, CH2Cl2,
–78 °C, 2 h, then Et3N, –78 °C to r.t.; b) Ph3P+MeBr–, KHMDS, THF,
–10 °C, 3 h, 81% (two steps); c) n-Bu4NF (6 equiv), THF, reflux,
0.5 h, 90%; d) CSA (0.1 equiv), CH2Cl2, –40 °C to r.t., 6 h, 85%;
e) NaH, p-MeOC6H4CH2Cl, MeCN, r.t., 32 h, 68%; f) BH3·SMe2,
THF, 0 °C, 2 h; then aq NaOH, H2O2, 0 °C to r.t., 2 h, 60%.
Synlett 2006, No. 8, 1177–1180 © Thieme Stuttgart · New York