conversion of 6f to 8 was then accomplished using I2 in the
presence of pyridine.11
of the Boc derivatives 9 to the saturated piperidinone 10
would circumvent this problem. The construction of sym-
metrical pyrazines from R-amino aldehydes and ketones is
well-known, and condensation usually proceeds fairly eas-
ily.15 The 1,4-reduction of 9 using known procedures such
as L-selectride16 or Stryker’s reagent proved to be difficult.17
Poor selectivity of 1,4- vs 1,2-reduction and/or low yields
of the corresponding piperidinones were observed. The only
reagent that gave complete 1,4-selectivity and full conversion
was a combination of CuBr and LiAl(OtBu)3H.18 Thus, we
could obtain compounds 10a and 10b in excellent yields and
good diastereoselectivities. Although having diastereomeri-
cally enriched 10 is meaningless for the remainder of the
synthesis, as the stereogenic center is lost in the subsequent
step, the Boc-amino ketones 10 are interesting chiral building
blocks.
R-Iodo, R,â-unsaturated carbonyl compounds are valuable
intermediates in organic synthesis, especially in transition-
metal-mediated reactions.12 For the purpose of the synthesis
of 1 and 2, R-iodo 7a and 8 were transformed into the Boc-
amino enones 9a,b via a Buchwald’s Cu-catalyzed C-N
cross-coupling using tert-butyl carbamate13 (Scheme 2).
Scheme 2. Synthesis of Protected Barrenazine A and B
The configuration of piperidinone 10a was determined by
analyzing the coupling constants and by NOESY experi-
ments. Nitrogen heterocycles protected with acyl, carbamate,
or imidate groups are known to place substituents at the
2-position axially, to minimize A1,3 strain (Figure 2).19 NMR
Figure 2. Configuration of N-Boc-amino ketone 10.
analysis indicated that diastereomer 10 was the major product
arising from the reduction (Figure 2).
Having Boc-amino ketones 10 in hand, the next steps
consisted of the amine deprotection with TFA followed by
the oxidative cyclization under basic conditions in air to
afford 11.
The amidine auxiliary was then removed via an intra-
molecular, alkoxy-assisted strategy using BBr3 (Scheme 3).
Originally, we intended to use 9 directly in a reductive
cyclization to construct the pyrazine core of barrenazine.
However, the R-amino enone obtained from 9a upon TFA
deprotection did not undergo the desired reaction using Pd/C
and hydrogen gas.14 Presumably, the enone system is too
deactivated because of conjugation of the free amino group
with the amidine moiety. It was anticipated that reduction
(15) Selected examples: (a) Tonsiengsom, F.; Miyake, F. Y.; Yakushijin,
K.; Horne, D. A. Synthesis 2005, in print. (b) Gosh, U.; Ganessunker, D.;
Sattigeri, V. J.; Carlson, K. E.; Mortensen, D. J.; Katzenellenbogen, B. S.;
Katzenellenbogen, J. A. Bioorg. Med. Chem. 2003, 11, 629-657. (c) Chiba,
T.; Sakagami, H.; Murata, M.; Okimoto, M. J. Org. Chem. 1995, 60, 6764-
6770.
(16) Selected examples: (a) Alcaide, B.; Almendros, P.; Alonso, J. M.;
Aly, M. F. Chem.-Eur. J. 2003, 9, 3415-3426. (b) Tasber, E. S.; Garbaccio,
R. M. Tetrahedron Lett. 2003, 44, 9185-9188. (c) Lim, S. H.; Curtis, M.
D.; Beak, P. Org. Lett. 2001, 3, 711-714. (d) Comins, D. L.; Libby, A.
H.; Al-awar, R. S.; Foti, C. J. J. Org. Chem. 1999, 64, 2184-2185.
(17) Selected examples: (a) Lipshutz, B. H.; Chrisman, W.; Noson, K.;
Papa, P.; Sclafani, J. P.; Vivian, R. W.; Keith, J. M. Tetrahedron 2000, 56,
2779-2788. (b) Lipshutz, B. H.; Keith, J.; Papa, P.; Vivian, R. Tetrahedron
Lett. 1998, 39, 4627-4630. (c) Mahoney, W. S.; Brestensky, D. M.; Stryker,
J. M. J. Am. Chem. Soc. 1988, 110, 291-293.
(18) 1,4-Reduction of enones with CuX/LiAlH: (a) Comins, D. L.;
LaMunyon, D. H. Tetrahedron Lett. 1989, 30, 5053-5056. (b) Comins, D.
L.; Abdullah, A. H. J. Org. Chem. 1984, 49, 3392-3394. (c) Semmelhack,
M. F.; Stauffer, R. D.; Yamashita, A. J. Org. Chem. 1977, 42, 3180-3188.
(19) (a) Watson, P. S.; Jiang, B.; Scott, B. Org. Lett. 2000, 2, 3679-
3681. (b) Hoffmann, H. R. Chem. ReV. 1989, 89, 1841-1860. (c) Johnson,
F. Chem. ReV. 1968, 68, 375-413. See also the X-ray crystal structures in
the Supporting Information.
(11) I2/pyridine reagent: (a) Krafft, M. E.; Cran, J. W. Synlett 2005,
1263-1266. (b) Souza, F. E. S.; Sutherland, H. S.; Carlini, R.; Rodrigo, R.
J. Org. Chem. 2002, 67, 6568-6570. (c) Johnson, C. R.; Adam, J. P.; Braun,
M. P.; Senanayake, C. B. W.; Wovkulich, P. M.; Uskokovic, M. R.
Tetrahedron Lett. 1992, 33, 917-918.
(12) For review of â-iodo carbonyl compounds in Pd-catalyzed cross-
coupling reactions, see: Negishi, E. J. Organomet. Chem. 1999, 576, 179-
194.
(13) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett. 2003,
5, 3667-3669.
(14) For cyclizations of â-amino cyclohexenones, see: (a) Dro¨gemu¨ller,
M.; Flessner, T.; Jautelat, R.; Scholz, U.; Winterfeldt, E. Eur. J. Org. Chem.
1998, 2811, 1-2831. (b) Kramer, A.; Ullmann, U.; Winterfeldt, E. J. Chem.
Soc., Perkin Trans. 1 1993, 2865-2867.
Org. Lett., Vol. 8, No. 14, 2006
2987