A R T I C L E S
Evans et al.
Chart 1. R-Alkoxy Aldehyde and Enolate Structures
is based on the hexose open-chain product tautomer where the
carbonyl moiety is designated as C1. Accordingly, the carbonyl
center in the aldehyde precursors is designated as C3 (eq 5).
r-Alkoxy Aldehydes. It is well established that a carbonyl
with an adjacent R-alkoxy substituent reacts with a characteristic
stereochemical bias in the absence of chelate organization.4,5
Under such conditions, most nucleophilic additions proceed with
bias for the product diastereomer containing an anti configu-
ration between the newly formed hydroxyl moiety and the
vicinal oxygen heteroatom (Figure 1). Both the Cornforth6 and
polar Felkin-Anh7 transition-state models account for the
preferential formation of the 1,2-anti product diastereomer on
the basis of differing transition state control elements (Figure
1). Recent experimental8 and theoretical9 evidence indicates that
the Cornforth model more accurately describes asymmetric
induction in enolborane additions to R-alkoxy aldehydes.
â-Alkoxy Aldehydes. It is well established that nucleophilic
additions to â-alkoxy aldehydes result in the preferential
formation of the 3,5-anti product diastereomers (eq 6).12 The
selectivity is dependent on the type of enolate nucleophile, with
high levels of selectivity observed in Lewis acid-promoted
additions, moderate levels of selectivity observed in lithium
enolate additions, and little selectivity noted in enolborane
addition reactions. A transition state model based on minimiza-
tion of electrostatic and steric effects has been proposed to
account for the observed sense of 1,3-asymmetric induction
(Figure 2). The 3,5-anti product is proposed to arise from
transition structure C, in which nucleophilic attack occurs anti
to the R-carbon substituent, with the â-stereocenter oriented to
minimize both destabilizing gauche interactions of the â-alkyl
substituent and destabilizing electrostatic interactions between
the â-C-O and CdO dipoles.13 The most likely transition
structures for the formation of the syn product contain either
an unfavorable alignment of C-O and CdO dipoles (D), or an
unfavorable gauche arrangement of the â-alkyl substituent with
the reacting carbonyl (E).14,15
Figure 1. Nucleophilic addition models for R-alkoxy aldehydes.
Aldol additions between unsubstituted enolates and R-alkoxy
aldehydes generally favor the formation of the anti product
diastereomer, although significant variations in the magnitude
of asymmetric induction have been reported.10 To generate an
internally consistent data set for this study, R-alkoxy aldehydes
1-311 were studied in aldol addition reactions with methyl
ketone-derived nucleophiles of three distinct types (Chart 1).
Enolsilanes (M ) TMS), enolboranes (M ) 9-BBN), and
lithium enolates (M ) Li) derived from acetone, 3-methyl-2-
butanone, and pinacolone were studied to evaluate the influence
of both the type of enolate and the effects of nucleophile steric
hindrance on diastereofacial selectivity.
(8) The relationship between enolborane geometry and diastereofacial selectivity
in additions to R-alkoxy aldehydes has been interpreted as supporting a
modified Cornforth model: (a) Evans, D. A.; Siska, S. J.; Cee, V. J. Angew.
Chem., Int. Ed. 2003, 42, 1761-1765. For an alternative explanation based
on substituted allylborane additions to R-alkoxy aldehydes, see: (b) Roush,
W. R. In Houben-Weyl; Helmchen, G., Hoffmann, R. W., Mulzer, J.,
Schaumann, E. Eds.; Thieme: Stuttgart, 1995; Vol. E21, pp 1410-1486.
For additional examples of substituted enolborane and allylborane additions
to R-alkoxy aldehydes, see: (c) Hoffmann, R. W. Chem. Scr. 1985, 25
(Special Issue), 53-60. (d) Roush, W. R.; Adam, M. A.; Walts, A. E.;
Harris, D. J. J. Am. Chem. Soc. 1986, 108, 3422-3434. (e) Williams, D.
R.; Moore, J. L.; Yamada, M. J. Org. Chem. 1986, 51, 3916-3918. (f)
Hoffmann, R. W.; Metternich, R.; Lanz, J. W. Liebigs Ann. Chem. 1987,
881-887. (g) Wuts, P. G. M.; Bigelow, S. S. J. Org. Chem. 1988, 53,
5023-5034. (h) Brinkmann, H.; Hoffmann, R. W. Chem. Ber. 1990, 123,
5-2401. (i) Hu, S.; Jayaraman, S.; Oehlschlager, A. C. J. Org. Chem. 1998,
63, 8843-8849.
(3) (a) Davies, S. G.; Nicholson, R. L.; Smith, A. D. Synlett 2002, 1637-
1640. (b) Northrup, A. B.; MacMillan, D. W. C. Science 2004, 305, 1753-
1755. (c) Davies, S. G.; Nicholson, R. L.; Smith, A. D. Org. Biomol. Chem.
2004, 2, 3385-3400. (d) Davies, S. G.; Nicholson, R. L.; Smith, A. D.
Org. Biomol. Chem. 2005, 3, 348-359. (e) Casas, J.; Engqvist, M.; Ibrahem,
I.; Kaynak, B. Cordova, A. Angew. Chem., Int. Ed. 2005, 44, 1343-1345.
(f) Timmer, M. S. M.; Adibekian, A.; Seeberger, P. H. Angew. Chem., Int.
Ed. 2005, 44, 7605-7607.
(9) Cee, V. J.; Cramer, C. J.; Evans, D. A. J. Am. Chem. Soc. 2006, 128, 2920-
2930.
(4) For a review of chelation-controlled nucleophilic additions, see: (a) Reetz,
M. T. Angew. Chem., Int. Ed. Engl. 1984, 23, 556-569. (b) Reetz, M. T.
Acc. Chem. Res. 1993, 26, 462-468. For experimental evidence of chelates
as reactive intermediates see: (c) Chen, X.; Hortelano, E. R.; Eliel, E. L.;
Frye, S. V. J. Am. Chem. Soc. 1992, 114, 1778-1784.
(10) Lithium enolate addition: (a) Heathcock, C. H.; Young, S. D.; Hagen, J.
P.; Pirrung, M. C.; White, C. T.; VanDerveer, D. J. Org. Chem. 1980, 45,
3846-3856. (b) Lodge, E. P.; Heathcock, C. H. J. Am. Chem. Soc. 1987,
109, 3353-3361. (c) Mahler, U.; Devant, R. M.; Braun, M. Chem. Ber.
1988, 121, 2035-2044. (d) Dondoni, A.; Merino, P. J. Org. Chem. 1991,
56, 5294-5301. Mukaiyama aldol: (e) Heathcock, C. H.; Davidsen, S.
K.; Hug, K. T.; Flippin, L. A. J. Org. Chem. 1986, 51, 3027-3037. (f)
Kita, Y.; Tamura, O.; Itoh, F.; Yasuda, H.; Kishino, H.; Ke, Y. Y.; Tamura,
Y. J. Org. Chem. 1988, 53, 554-561. (g) Gennari, C. In ComprehensiVe
Organic Synthesis; Heathcock, C. H., Ed.; Pergamon Press: Oxford, 1991;
Vol. 2, pp 640-647. Enolborane addition: (h) Gennari, C.; Bernardi, A.;
Cardani, S.; Scolastico, C. Tetrahedron 1984, 40, 4059-4065.
(5) For a study of chelation-controlled enolate additions see: Evans, D. A.;
Allison, B. D.; Yang, M. G.; Masse, C. E. J. Am. Chem. Soc. 2001, 123,
10840-10852.
(6) (a) Cornforth, J. W.; Cornforth, R. H.; Mathew, K. K. J. Chem. Soc. 1959,
112-127. The Cornforth model discussed here is modified from its original
form to incorporate contemporary concepts of a staggered arrangement
about the forming C-Nu bond and a >90° angle of attack for the incoming
nucleophile. This is often referred to as the Dunitz-Bu¨rgi angle: (b) Bu¨rgi,
H. B.; Dunitz, J. D.; Shefter, E. J. Am. Chem. Soc. 1973, 95, 5065-5067.
(c) Bu¨rgi, H. B.; Dunitz, J. D.; Lehn, J. M.; Wipff, G. Tetrahedron 1974,
30, 1563-1572.
(7) (a) Che´rest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 9, 2199-
2204. (b) Che´rest, M.; Felkin, H. Tetrahedron Lett. 1968, 9, 2205-2208.
(c) Anh, N. T.; Eisenstein, O. NouV. J. Chim. 1977, 1, 61-70. (d) Anh, N.
T. Top. Curr. Chem. 1980, 88, 145-162.
(11) For experimental details concerning the construction of aldehydes 1-17,
and stereochemical proofs of the products, see the Supporting Information.
(12) Evans, D. A.; Duffy, J. L.; Dart, M. J. Tetrahedron Lett. 1994, 35, 8537-
8540, and references therein.
(13) This assumption is supported by semiempirical calculations of ground-
state aldehyde conformations. For aldehyde-BF3 complexes (AM1), see
ref 2. For uncomplexed aldehydes (AM1 and PM3), see: Bonini, C.;
Esposito, V.; D’Auria, M.; Righi, G. Tetrahedron 1997, 53, 13419-13426.
9
9434 J. AM. CHEM. SOC. VOL. 128, NO. 29, 2006