C O M M U N I C A T I O N S
Table 1. Arylation of N-Heterocycles with Bromonium Ylide 2a
entry
2
N-heterocycle
time
3
yield (%)b
1
2
3
4
5
6
2a
2a
2a
2a
2a
2b
pyridine
3 days
24 h
3a
3b
3c
3d
3e
3f
77
81
54
(97)
(94)
84
4-tert-butylpyridine
4-(dimethylamino)pyridine
4,4′-bipyridine
N-methylimidazole
pyridine
2 hc
18 h
3 days
24 h
a Conditions: 1:2 2:N-heterocycle, dichloromethane, 45 °C, Ar. b Isolated
yields. Numbers in parentheses are 1H NMR yields. c Reaction was carried
out at room temperature.
Figure 2. Optimized structures of 2a and 5 with natural charges at Cylide
ipso, Br, and I calculated with the B3LYP/LanL2DZ method (Gaussian
03W).
,
C
Scheme 1
electronegativity of bromine relative to iodine.21 The remaining
positive charge in 2a is mostly delocalized on the aryl group (Figure
S3), which makes possible the facile SNAr reaction with N-
heterocycles.
Supporting Information Available: Experimental details, Scheme
S1, Figures S1-S3, and X-ray crystallographic data in CIF format for
2a and 3f. This material is available free of charge via the Internet at
selectively with concomitant reductive elimination of bissulfonyl-
bromomethanide anion (Table 1); thus, exposure of ylide 2a to
pyridine (2 equiv) in dichloromethane at 45 °C for 3 days under
argon afforded N-(p-trifluoromethylphenyl)pyridinium bissulfonyl-
bromomethanide 3a in 77% yield, with no evidences for transyli-
dations (entry 1).17,18 4,4′-Bipyridine and N-methylimidazole pro-
duced the pyridinium 3d and imidazolium salts 3e, respectively,
in high yields. Interestingly, this N-arylation of pyridine seems to
be specific for the bromonium ylides 2, and no formation of
pyridinium salt 3a was observed in the reaction with bissulfonyl
iodonium ylide (CF3SO2)2C--I+C6H4-p-CF3 5, which was recov-
ered unchanged under our conditions. Formation of these am-
monium salts 3 probably involves a rate-limiting nucleophilic attack
of N-heterocycles to the aromatic ipso carbons of 2, generating
Meisenheimer-type complexes, which in turn expel the bissul-
fonylbromomethanide anion as a leaving group. A greater electron-
withdrawing nature of λ3-bromanyl groups compared to that of λ3-
iodanyl groups seems to be responsible for these differences in
reactivity between the bromonium and iodonium ylides.19
References
(1) Reviews: (a) Muller, P. Acc. Chem. Res. 2004, 37, 243. (b) Zhdankin,
V. V.; Stang, P. J. Chem. ReV. 2002, 102, 2523. (c) Varvoglis, A. The
Organic Chemistry of Polycoordinated Iodine; VCH: New York, 1992.
(d) Koser, G. F. In The Chemistry of Functional Groups, Supplement D;
Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1983; Chapter 18.
(2) (a) Moreau, B.; Charette, A. B. J. Am. Chem. Soc. 2005, 127, 18014. (b)
Ochiai, M.; Kitagawa, Y.; Yamamoto, S. J. Am. Chem. Soc. 1997, 119,
11598. (c) Moriarty, R. M.; Prakash, O.; Vaid, R. K.; Zhao, L. J. Am.
Chem. Soc. 1989, 111, 6443. (d) Hadjiarapoglou, L.; Spyroudis, S.;
Varvoglis, A. J. Am. Chem. Soc. 1985, 107, 7178. (e) Moriarty, R. M.;
Bailey, B. R.; Prakash, O.; Prakash, I. J. Am. Chem. Soc. 1985, 107, 1375.
(f) Gudrinietse, E.; Neiland, O.; Vanag, G. J. Gen. Chem. USSR 1957,
27, 2777.
(3) Camacho, M. B.; Clark, A. E.; Liebrecht, T. A.; DeLuca, J. P. J. Am.
Chem. Soc. 2000, 122, 5210.
(4) (a) Ochiai, M. In Topics in Current Chemistry; Wirth, T., Ed.; Springer:
Berlin, 2003; Vol. 224, p 5. (b) Okuyama, T.; Takino, T.; Sueda, T.;
Ochiai, M. J. Am. Chem. Soc. 1995, 117, 3360.
(5) For synthesis of a reverse ylide, see: Arduengo, A. J.; Kline, M.;
Calabrese, J. C.; Davidson, F. J. Am. Chem. Soc. 1991, 113, 9704.
(6) (a) Pirkle, W. H.; Koser, G. F. J. Am. Chem. Soc. 1968, 90, 3598. (b)
Ando, W.; Kondo, S.; Nakayama, K.; Ichibori, K.; Kohoda, H.; Yamato,
H.; Imai, I.; Nakaido, S.; Migita, T. J. Am. Chem. Soc. 1972, 94, 3870.
(c) Dias, H. V. R.; Browning, R. G.; Polach, S. A.; Diyabalanage, H. V.
K.; Lovely, C. J. J. Am. Chem. Soc. 2003, 125, 9270.
(7) (a) Sheppard, W. A.; Webster, O. W. J. Am. Chem. Soc. 1973, 95, 2695.
(b) Atwood, J. L.; Sheppard, W. A. Acta Crystallogr. 1975, B31, 2638.
(8) Koshar, R. J.; Mitsch, R. A. J. Org. Chem. 1973, 38, 3358.
(9) Ochiai, M.; Nishi, Y.; Goto, S.; Shiro, M.; Frohn, H. J. J. Am. Chem.
Soc. 2003, 125, 15304.
(10) Hansch, C.; Leo, A.; Taft, R. W. Chem. ReV. 1991, 91, 165.
(11) Ochiai, M.; Nishi, Y.; Mori, T.; Tada, N.; Suefuji, T.; Frohn, H. J. J. Am.
Chem. Soc. 2005, 127, 10460.
(12) It has been shown that the C-X bond of ylides RnX+-C-R′R′′ is longer
than a single bond when X is a highly electronegative atom (N, O). See:
Kirmse, W. Eur. J. Org. Chem. 2005, 237.
(13) Zhu, S.-Z.; Chen, Q.-Y. J. Chem. Soc., Chem. Commun. 1990, 1459.
(14) Yanovskii, A. I.; Struchkov, Y. T.; Grushin, V. V.; Tolstaya, T. P.;
Demkina, I. I. Zh. Strukt. Khim. 1988, 29, 89.
Interestingly, use of trialkylamines dramatically changed the
reaction course and, instead of the N-arylation, bromoarene was
liberated selectively; thus, reaction of 2a with triethylamine (2
equiv) at room temperature for 10 min afforded triethylammonium
bissulfonylmethanide 4a (76%)20 and p-(trifluoromethyl)bromoben-
zene (97%) (Scheme 1). Similarly, use of N-benzylpiperidine
produced the corresponding piperidinium methanide 4b quantita-
tively.
To shed light on the reactivity differences between bromonium
and iodonium ylides, density functional theory (DFT) calculations
on the ylides 2a and 5 were carried out (Figure 2). The calculated
structure of 2a is in a good agreement with the solid state structure
shown in Figure 1. Natural charges via the natural population
analysis (NPA) show that the Br(III) atom in 2a is apparently less
positive than the I(III) atom in 5, probably reflecting the greater
(15) For a secondary bonding in sulfonylimino-λ3-iodanes, see: Boucher, M.;
Macikenas, D.; Ren, T.; Protasiewicz, J. D. J. Am. Chem. Soc. 1997, 119,
9366.
(16) Karele, B.; Neiland, O. J. Org. Chem. USSR 1966, 2, 1656.
(17) The structure of the pyridinium salt 3f was determined by X-ray
crystallographic analysis (Figure S2).
(18) For N-phenylation of pyridine using diphenylbromonium salts, see: (a)
Nesmeyanov, A. N.; Tolstaya, T. P.; Isaeva, L. S. Dokl. Akad. Nauk 1957,
117, 996. (b) Tolstaya, T. P.; Demkina, I. I.; Grushin, V. V.; Vanchikov,
A. N. Zh. Org. Khim. USSR 1989, 25, 2569.
(19) Grushin, V. V.; Demkina, I. I.; Tolstaya, T. P.; Galakhov, M. V.;
Bakhmutov, V. I. Organomet. Chem. USSR 1989, 2, 373.
(20) We found that the hydrogen atom of bissulfonylmethanide anion in 4a
originates from triethylamine (Scheme S1).
(21) (a) Nesmeyanov, A. N.; Sergeev, N. M.; Ustynyuk, Y. A.; Tolstaya, T.
P.; Lisichkina, I. N. IzV. Akad. Nauk Ser. Khim. 1970, 154. (b)
Nesmeyanov, A. N.; Saat-sazov, V. V.; Khotsyanova, T. L.; Kuznetsov,
S. I.; Lisichkina, I. N.; Tolstaya, T. P. Dokl. Akad. Nauk 1976, 227, 670.
JA063492+
9
J. AM. CHEM. SOC. VOL. 128, NO. 30, 2006 9609