Page 3 of 5
ChemComm
Please do not adjust margins
Journal Name
COMMUNICATION
alkyl radical C, where an oxidative radical aDdOdiIt:i1o0n.10o3c9c/uCr9sCtCo0g0i3v0e7aJ
nickel(II)–dialkyl complex D, which underwent transmetalation with
carbon-nucleophile H derived from deprotonation of hydrazone 1 to
form the intermediate E. Reductive elimination gave the diimide F
moderate yield of 53% (Scheme 3, 4g). In addition, cyclic alkyl
bromides including 1-bromocyclopentane, 1-bromocyclohexane,
bromocycloheptane accomplished this conversion (Scheme 3, 4h-4i).
Finally, the cross coupling reactions with primary and tertiary alkyl
bromides were investigated. 1-Bromoheptane 2k and 1- and regenerated Ni (0) catalyst. Finally, the desired product 3 was
formed by denitrogenation assisted with the base.
bromoadamantane 2l smoothly converted into the corresponding
products in 43% and 45% yield, respectively (Eq 1 and 2). These
results indicate our strategy for catalyzing alkyl-alkyl coupling was
not limited to secondary alkyl bromide.
In summary, a novel nickel-catalyzed alkyl-alkyl cross coupling
reactions of non-activated secondary alkyl bromides with aldehydes
as alkyl carbanion equivalents has been successfully developed. The
method provides a simple strategy for alkyl-alkyl cross-couplings
using naturally abundant aldehydes instead of organometallic
reagents to synthesize some useful synthetic precursors having
tertiary carbon centers,5e filling the gaps in the classical cross-
coupling reactions. Further studies on enantioselective version of
this novel cross-coupling chemistry are underway in our laboratory.
We gratefully acknowledge the funding support of NSFC (21425205,
21672067), 973 Program (2015CB856600), and the Program of
Eastern Scholar at Shanghai Institutions of Higher Learning, and the
China Postdoctoral Science Foundation (2017M610236).
Ph
Ni(COD)2 (10 mol%),
NNH2
dppf (20 mol%)
n-hex
2k
Br
+
(1)
n-hex
Ph
Ph
NaOtBu (2 equiv.)
THF, 80 oC, 12 h
5
, 43%
1k
Ni(COD)2 (10 mol%),
dppf (20 mol%)
Ph
NNH2
Br +
(2)
NaOtBu (2 equiv.)
THF, 80 oC, 12 h
2l
1k
6
, 45%
Although the exact mechanism is still unclear at this stage, we still
tried hard to explore. We found that a mixture of olefin by-product
was produced in the presence of base without the nickel catalyst (eq.
3). Cyclopropanecarbaldehyde derived hydrazone 1u could not
deliver the desired products under the reaction conditions (eq. 4).
Secondary alkyl bromide 2m with cyclopropyl group gave a mixture
of ring opening products 9 rather than the corresponding product 4m
(eq. 5). This suggests that the reaction might involve a free radical
process.
Notes and references
1
(a) F. Diederich and P. J. Stang, Metal-Catalyzed Cross-Coupling
Reactions, Wiley-VCH, Weinheim, Germany, 1998; (b) A. de
Meijere and F. Diederich, Metal-Catalyzed Cross-Coupling
Reactions, Wiley-VCH, Weinheim, Germany, 2004; (c) M. R.
Netherton and G. C. Fu, Topics in Organometallic Chemistry:
Palladium in Organic Synthesis, Springer, New York, 2005, 85; (d)
Cross-Coupling Reactions: A Practical Guide, Topics in Current
Chemistry Series 219 (Ed.: Miyaura N.), Springer, New York,
2002.
Br
NaOtBu, THF, 80 o
C
(3)
+
Ph
Ph
Ph
12 h
2b
7
mixture of , 80%
2
3
(a) L. Peng, Y. Li, Y. Li, W. Wang, H. Pang, and G. Yin, ACS Catal.,
2018, 8, 310; (b) S. Dupuy, K. Zhang, A. Goutierre and O. Baudoin,
Angew. Chem. Int. Ed., 2016, 55, 14793; (c) M. C. Henningsen, S.
Jeropoulos, and E. H. Smith, J. Org. Chem., 1989, 54, 3015; (d) A.
C. Bissember, A. Levina and G. C. Fu, J. Am. Chem. Soc., 2012,
134, 14232; (e) F. Chen, K. Chen, Y. Zhang, Y. He, Y. Wang and S.
Zhu, J. Am. Chem. Soc., 2017, 139, 13929.
(a) N. Kambe, T. Iwasakia and J. Teraob, Chem. Soc. Rev., 2011,
40, 4937; (b) D. J. Cárdenas, Angew. Chem. Int. Ed., 2003, 42,
384; (c) K. G. Dongol, H. Koh, M. Sau and C. L. L. Chaia, Adv. Synth.
Catal., 2007, 349, 1015; (d) O. Vechorkin and X. Hu, Angew.
Chem., Int. Ed., 2009, 48, 2937; (e) J. Terao and N. Kambe, Acc.
Chem. Res., 2008, 41, 1545.
Standard condition
(4)
(5)
+
NNH2
+
Ph
2a
Ph
3u
, n. d.
1u
8
, n. d.
Ph
Br
4m
, n. d.
Standard condition
Ph
1k
Ph
+
+
2m
Ph
Ph
9
, 45%
Ln-Ni(0)
dppf
alkyl
N
4
5
(a) F. Glorius, Angew. Chem. Int. Ed., 2008, 47, 8347; (b) A.
Rudolph and M. Lautens, Angew. Chem. Int. Ed., 2009, 48, 2656;
(c) A. C. Frisch and M. Beller, Angew. Chem. Int. Ed., 2005, 44,
674; (d) M. R. Netherton and G. C. Fu, Adv. Synth. Catal., 2004,
346, 1525.
Base
N2
Br
3
alkyl
NH
P
P
Ni(0)
alkyl
alkyl
R
F
2
A
(a) J. T. Binder, C. J. Cordier and G. C. Fu, J. Am. Chem. Soc., 2012,
134, 17003; (b) S. W. Smith and G. C. Fu, Angew. Chem. Int. Ed.,
2008, 47, 9334; (c) Z. Lu and G. C. Fu, Angew. Chem. Int. Ed.,
2010, 49, 6676; (d) G. Cahiez, C. Chaboche, C. Duplais, A.
Giulliani and A. Moyeux, Adv. Synth. Catal., 2008, 350, 1484; (e)
R. Shen, T. Iwasaki, J. Terao and N. Kambe, Chem. Commun.,
2012, 48, 9313; (f) B. Saito and G. C. Fu, J. Am. Chem. Soc., 2008,
130, 6694; (g) N. A. Owston and G. C. Fu, J. Am. Chem. Soc., 2010,
132, 11908; (h) Z. Lu, A. Wilsily and G. C. Fu, J. Am. Chem. Soc.,
2011, 133, 8154; (i) B. Saito and G. C. Fu, J. Am. Chem. Soc., 2007,
129, 9602; (j) V. B. Phapale, E. Bunuel, M. G. Iglesias and D. J.
Cárdenas, Angew. Chem. Int. Ed., 2007, 46, 8790; (k) P. Ren, O.
Vechorkin, K. Allmen, R. Scopelliti and X. Hu, J. Am. Chem. Soc.,
2011, 133, 7084; (l) T. Tsuji, H. Yorimitsu and K. Oshima, Angew.
Br
Ni(I)
alkyl
alkyl
P
P
P
P
Ni(II)
N
alkyl
+
alkyl
C
B
R
NH
E
Br
Ni(II)
alkyl
P
P
NH
N
NH
NH
N
2 Base
-H+
N
alkyl
R
R
D
R
G
H
1
Scheme 4. Proposed mechanism
According to our previous works and literature reports4b, 5o, 8d, 11
,
a plausible reaction pathway was depicted in Scheme 4. Ni(0)
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins