C O M M U N I C A T I O N S
Scheme 3. Postulated Catalytic Cycle Involving NHC
Acknowledgment. This paper is dedicated with best regards
to Professor Gilbert Stork. The authors thank the Council of
Scientific and Industrial Research (CSIR) and Department of
Science and Technology (DST), New Delhi, for financial assistance.
We thank Dr. Luxmi Varma and Mr. Thirumalai Kumaran for
assistance with NMR spectroscopy.
Supporting Information Available: General experimental proce-
dure, spectroscopic characterization of all new compounds, and single-
crystal X-ray data of compound 4a. This material is available free of
References
(1) Nickon, A.; Lambert, J. L. J. Am. Chem. Soc. 1962, 84, 4604.
(2) Bal, A. S.; Marfat, A.; Helquist, P. J. Org. Chem. 1982, 47, 5045.
(3) For reviews on homoenolate anion and their equivalents, see: (a) Lee,
V. J. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: New York, 1991; Vol. 4, p 117 and references therein. (b)
Werstiuk, N. H. Tetrahedron 1983, 39, 205.
(4) Lombaert, S. D.; Lesur, B.; Ghosez, L. Tetrahedron Lett. 1982, 23, 4251.
(5) Nakamura, E.; Aoki, S.; Sekiya, K.; Oshino, H.; Kuwajima, I. J. Am.
Chem. Soc. 1987, 109, 8056.
A mechanistic rationale for the reaction may be advanced along
the following lines. As might be expected, the homoenolate I formed
by the reaction of IMes with enal undergoes conjugate addition17
to the chalcone, followed by proton transfer to generate the enolate
IIa, which participates in intramolecular aldol reaction to deliver
the cyclopentane carbinolate III. The latter undergoes beta-
lactonization to eject IMes, allowing the catalytic cycle to continue.
The â-lactone V thus formed is unstable and it undergoes a retro
[2+2] process to yield the cyclopentene B, with the loss of carbon
dioxide (Scheme 3). It is important to mention that aldol lacton-
ization leading to â-lactones has been described in the literature.18,19
The intermediacy of the â-lactone postulated here can be demon-
strated by FTIR spectroscopy. A thin film of the reaction mixture
on a NaCl pellet initially displayed the characteristic absorption of
the â-lactone at 1822 cm-1(νmax), then a time-dependent depletion
of the peak occurs in 45 min. This can be attributed to the
elimination of carbon dioxide from â-lactone.16 The formation of
cyclopentene B at the exclusion of the expected 2-acyl cyclopen-
tanone A may be rationalized by invoking the higher stability of
the enolate IIa vis a vis IIb due to coulombic as well as inductive
stabilization offered by the azolium moiety. Thus, the alternate aldol,
involving IIb leading to cyclopentanone, is not favored.
Although bicyclic â-lactones are known to be unstable,19a,20 the
exceptional instability displayed by the present compounds may
be attributed to the bulky substituents, which hamper the disposition
of the five-membered ring in the thermodynamically favorable
folded envelope conformation. In addition, carbon dioxide elimina-
tion will install the styrenic double bond inside the cyclopentane
ring, thus rendering it relatively planar. The trans disposition of R1
and R2 is not surprising; it is predicated by the transition state for
the reaction of the homoenol with the chalcone, reminiscent of the
Michael addition of enol/enolate to R,â-unsaturated carbonyl
compounds.
(6) Selected references: (a) Binns, M. R.; Haynes, R. K. J. Org. Chem. 1981,
46, 3790. (b) Hirama, M. Tetrahedron Lett. 1981, 22, 1905. (c) Krams,
G. A.; Fraizier, K. Synth. Commun. 1978, 8, 483. (d) Sanchez, I. H.;
Aguilar, A. M. Synthesis 1981, 55. (e) Haynes, R. K.; Katsifis, A. G.;
Vonwiller, S. C.; Hambley, T. W. J. Am. Chem. Soc. 1988, 110, 5423. (f)
Hua, D. H.; Venkataraman, S.; Ostrander, R. A.; Gurudas, S. Z.; McCann,
P. J.; Coulter, M. J.; Xu, M. R. J. Org. Chem. 1988, 53, 507 and references
therein. (g) Ahlbrecht, H.; Dietz, M.; Weber, L. Synthesis 1987, 251.
(7) O¨ zlu¨gedik, M.; Kristensen, J.; Wibbeling, B.; Fro¨hlich, R.; Hoppe, D.
Eur. J. Org. Chem. 2002, 414. For recent examples, see: (a) Seppi, M.;
Kalkofen, R.; Reupohl, J.; Fro¨hlich, R.; Hoppe, D. Angew. Chem., Int.
Ed. 2004, 43, 1423. (b) Reuber, J.; Fro¨hlich, R.; Hoppe, D. Org. Lett.
2004, 6, 783.
(8) Whisler, M. C.; Beak, P. J. Org. Chem. 2003, 68, 1207.
(9) (a) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126,
14370. (b) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43,
6205. (c) Chan, A.; Scheidt, K. A. Org. Lett. 2005, 7, 905. (d) He, M.;
Bode, J. W. Org. Lett. 2005, 7, 3131. (e) Zeitler, K. Angew. Chem., Int.
Ed. 2005, 44, 7506.
(10) For the origin of NHC chemistry and its catalytic reactivity, see: Breslow,
R. J. Am. Chem. Soc. 1958, 80, 3719. For the isolation of stable NHCs,
see: (a) Arduengo, A. J., III; Harlow, R. L.; Kline, M. K. J. Am. Chem.
Soc. 1991, 113, 361. (b) Enders, D.; Breuer, K.; Raabe, G.; Runsink, J.;
Teles, J. H.; Melder, J.-P.; Ebel, K.; Brode, S. Angew. Chem., Int. Ed.
Engl. 1995, 34, 1021.
(11) For reviews, see: (a) Enders, D.; Balensiefer, T. Acc. Chem. Res. 2004,
37, 534. (b) Nair, V.; Bindu, S.; Sreekumar, V. Angew. Chem., Int. Ed.
2004, 43, 5130.
(12) (a) Singh, R.; Kissling, R. M.; Letellier, M.-A.; Nolan, S. P. J. Org. Chem.
2004, 69, 209. (b) Kerr, M. S.; Read de Alaniz, J.; Rovis, T. J. Am. Chem.
Soc. 2002, 124, 10298. (c) Enders, D.; Kallfass, U. Angew. Chem., Int.
Ed. 2002, 41, 1743. (d) Reynolds, N. T.; Rovis, T. J. Am. Chem. Soc.
2005, 127, 16406. (e) Christmann, M. Angew. Chem., Int. Ed. 2005, 44,
2632.
(13) (a) Nair, V.; Sreekumar, V.; Bindu, S.; Suresh, E. Org. Lett. 2005, 7,
2297. (b) Nair, V.; Bindu, S.; Sreekumar, V.; Rath, N. P. Org. Lett. 2003,
5, 665.
(14) Nair, V.; Vellalath, S.; Poonoth, M.; Mohan, R.; Suresh, E. Org. Lett.
2006, 8, 507.
(15) (a) Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906. (b) Lu, X.; Zhang,
C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535. (c) Lu, X.; Lu, Z.; Zhang, X.
Tetrahedron 2006, 62, 457. (d) Wison, J. E.; Fu, G. C. Angew. Chem.,
Int. Ed. 2006, 45, 1426.
(16) See Supporting Information for details.
(17) (a) Crimmins, M. T.; Nantermet, P. G. J. Org. Chem. 1990, 55, 4235. (b)
Crimmins, M. T.; Nantermet, P. G.; Trotter, B. W.; Vallin, I. M.; Watson,
P. S.; McKerlie, L. A.; Reinhold, T. L.; Cheung, A. W.-H.; Stetson, K.
A.; Dedopoulou, D.; Gray, J. L. J. Org. Chem. 1993, 58, 1038.
(18) (a) Wynberg, H.; Staring, E. G. J. Am. Chem. Soc. 1982, 104, 166. (b)
Wynberg, H.; Staring, E. G. J. Org. Chem. 1985, 50, 1977.
(19) (a) Cortez, G. S.; Tennyson, R. L.; Romo, D. J. Am. Chem. Soc. 2001,
123, 7945. (b) Yokota, Y.; Cortez, G. S.; Romo, D. Tetrahedron 2002,
58, 7075. (c) Oh, S. H.; Cortez, G. S.; Romo, D. J. Org. Chem. 2005, 70,
2835.
In conclusion, we have uncovered a hitherto unknown NHC-
catalyzed homoenolate reaction with chalcones, leading to the
efficient formation of 1,3,4-trisubstituted cyclopentenes. The simple
and mild reaction conditions and the high yields of products are
likely to make the reaction attractive for its application in the
synthesis of a variety of natural and unnatural cyclopentene
derivatives. Further work to define the scope of the reaction and to
gain insight into the mechanistic details will be undertaken.
(20) Goldschmidt, Z.; Antebi, S. Tetrahedron Lett. 1978, 19, 1225.
JA0625677
9
J. AM. CHEM. SOC. VOL. 128, NO. 27, 2006 8737