ORGANIC
LETTERS
2006
Vol. 8, No. 14
3117-3120
Studies of New Indole Alkaloid Coupling
Methods for the Synthesis of
Haplophytine
Pankaj D. Rege, Yuan Tian, and E. J. Corey*
Department of Chemistry and Chemical Biology, HarVard UniVersity,
12 Oxford Street, Cambridge, Massachusetts 02138
Received May 30, 2006
ABSTRACT
The two novel bisindole alkaloid structures shown can be synthesized in a few steps from the canthiphytine derivative 9.
Haplophytine (1) is a potent insecticidal alkaloid isolated
from the Central American plant Haplophyton cimicidum
that consists of two alkaloidal subunits joined together in a
highly unusual way.1-4 Upon exposure to HBr, haplophytine
undergoes a unique 1,2-cationic shift to generate the rear-
ranged iminium bromide structure 2, which clearly contains
two indole moieties that are the most likely building blocks
for the biosynthetic pathway. The more complex of these
building blocks, aspidophytine (3), which is also naturally
occurring,4 has previously been synthesized in these labo-
ratories.5 The other coupling component may be a canthi-
phytine4 derivative derived from the tetracyclic indole
alkaloid 4. The chemical synthesis of haplophytine from
aspidophytine and a derivative of canthiphytine represents
a major challenge because of the obvious steric impediments
to such a coupling process and also the complete lack of
any precedent. In this paper we report on studies directed
toward this objective using a canthiphytine derivative and
an aspidophytine mimic.
(1) (a) Crosby, D. G. In Naturally Occurring Insecticides; Jacobson,
M., Crosby, D. G., Eds; Marcel Dekker: New York, 1991; p 213. (b)
Sukh Dev; Koul, O. In Insecticides of Natural Origin; Harwood
Academic Publishers: Amsterdam, The Netherlands, 1997; pp 250 and
251.
(2) (a) Rogers, E. F.; Snyder, H. R.; Fischer, R. F. J. Am. Chem. Soc.
1952, 74, 1987. (b) Snyder, H. R.; Fischer, R. F.; Walker, J. F.; Els, H. E.;
Nussberger, G. A. J. Am. Chem. Soc. 1954, 76, 2819, 4601. (c) Synder, H.
R.; Strohmayer, H. F.; Mooney, R. A. J. Am. Chem. Soc. 1958, 80,
3708.
(3) (a) Cava, M. P.; Talapatra, S. K.; Nomura, K.; Weisback, J. A.;
Douglas, B.; Shoop, E. C. Chem. Ind. (London) 1963, 1242. (b) Cava, M.
P.; Talapatra, S. K.; Yates, P.; Rosenberger, M.; Szabo, A. G.; Douglas,
B.; Raffauf, R. F.; Shoop, E. C.; Weisbach, J. A. Chem. Ind. (London)
1963, 1875. (c) Rae, I. D.; Rosenberger, M.; Szabo, A. G.; Willis, C. R.;
Yates, P.; Zacharias, D. E.; Jeffrey, G. A.; Douglas, B.; Kirkpatrick, J. L.;
Weisbach, J. A. J. Am. Chem. Soc. 1967, 89, 3061. (d) Zacharias, D. E.
Acta Crystallogr., Sect. B 1970, 26, 1455.
(4) Yates, P.; MacLachlan, F. N.; Rae, I. D.; Rosenberger, M.; Szabo,
A. G.; Willis, C. R.; Cava, M. P.; Behforouz, M.; Lakshmikantham, M.
V.; Zeigler, W. J. Am. Chem. Soc. 1973, 95, 7842.
10.1021/ol061319c CCC: $33.50
© 2006 American Chemical Society
Published on Web 06/15/2006