7212
J. S. Oh et al. / Tetrahedron Letters 43 (2002) 7209–7212
ing to the Houk model, a deactivating substituent
would take preferentially the ‘inside’ conformer in the
absence of strong steric interaction with a double bond.
As a result, the N-inside conformer will be predomi-
nant here with the electron-deficient aryl ketimines in
the monosubstituted olefins. However, the selectivity
depends on the size of the alkyl substituents as shown
in Table 3, which cannot be explained by the Houk
model only. The Vedejs model would be suitable for the
steric effect by the alkyl groups. The severe allylic
strain, A1,2 or A1,3, between the large alkyl side chain
and the substituents on the double bond22 would
strongly disfavor the N-outside conformer.
National Meeting, Chicago, IL, Aug. 26–30, 2001,
ORGN No. 286.
7. The selectivities with N-trichloroacetamide, N-benzoyl,
N-Boc, and N,N-dibenzyl derivatives for the dihydroxyl-
ation reactions of a monosubstituted olefin in aqueous
THF were about 1:1–1.3:1. See: Yoon, S. W. M.E. The-
sis, Seoul National University, Feb. 1997.
8. (a) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B.
Chem. Rev. 1994, 94, 2483–2547; (b) Jacobsen, E. N.;
Wu, M. H. In Comprehensive Asymmetric Catalysis;
Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.;
Springer: Berlin, 1999; Vol. 2, pp. 649–677.
9. For use of the benzophenone ketimine derivatives in the
enantioselective dihydroxylation reactions of allylamine,
see: (a) Corey, E. J.; Guzman, P. A.; Noe, M. C. J. Am.
Chem. Soc. 1995, 117, 10805–10816. For the ketimines as
a protecting group, see: (b) Greene, T. W.; Wuts, P. G.
M. Protective Groups in Organic Synthesis, 3rd ed.; John
Wiley & Sons: New York, 1999; pp. 587–590.
10. (a) Houk, K. N.; Moses, S. R.; Wu, Y.-D.; Rondan, N.
G.; Ja¨ger, V.; Schohe, R.; Fronczek, F. R. J. Am. Chem.
Soc. 1984, 106, 3880–3882; (b) Halterman, R. L.;
McEvoy, M. A. J. Am. Chem. Soc. 1992, 114, 980–985.
11. (a) Overman, L. E. J. Am. Chem. Soc. 1974, 96, 597–599;
(b) Overman, L. E. Acc. Chem. Res. 1980, 13, 218–224.
12. Sotomayor, N.; Vicente, T.; Dom´ınguez, E.; Lete, E.;
Villa, M.-J. Tetrahedron 1994, 50, 2207–2218.
13. Poli, G. Tetrahedron Lett. 1989, 30, 7385–7388.
14. (a) Wijayaratne, T.; Collins, N.; Li, Y.; Bruck, M. A.;
Polt, R. Acta Crystallogr. 1993, B49, 316–320; (b) Bae, J.
G. M.E. Thesis, Seoul National University, Feb. 1997.
15. Burdisso, M.; Gandolfi, R.; Rastelli, A. Tetrahedron Lett.
1991, 32, 2659–2662 and references cited therein.
16. (a) Wai, J. S. M.; Marko´, I.; Svendsen, J. S.; Finn, M. G.;
Jacobsen, E. N.; Sharpless, K. B. J. Am. Chem. Soc.
1989, 111, 1123–1125; (b) Johnson, R. A.; Sharpless, K.
B. In Catalytic Asymmetric Synthesis; Ojima, I., Ed., 2nd
ed.; Wiley-VCH: New York, 2000; pp. 357–398.
Acknowledgements
This work was supported in part by Pacific Corpora-
tion, Ministry of Health and Welfare (HMP-98-D-5-
0050), and the Brain Korea 21 Project.
References
1. (a) Hauser, F. M.; Ellenberger, S. R. Chem. Rev. 1986,
86, 35–67; (b) Sibi, M. P.; Lu, J.; Edwards, J. J. Org.
Chem. 1997, 62, 5864–5872 and references cited therein;
(c) Cardillo, G.; Tomasini, C. Chem. Soc. Rev. 1996, 25,
117–128; (d) Veeresha, G.; Datta, A. Tetrahedron Lett.
1997, 38, 5223–5224 and references cited therein; (e)
Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996,
96, 835–875; (f) Castejo´n, P.; Pasto´, M.; Moyano, A.;
Perica´s, M. A.; Riera, A. Tetrahedron Lett. 1995, 36,
3019–3022 and references cited therein.
2. For reviews, see: (a) Cha, J. K.; Kim, N.-S. Chem. Rev.
1995, 95, 1761–1795; (b) Cha, J. K.; Christ, W. J.; Kishi,
Y. Tetrahedron 1984, 40, 2247–2255.
17. (a) Merino, P.; Castillo, E.; Franco, S.; Mercha´n, F. L.;
Tejero, T. Tetrahedron 1998, 54, 12301–12322; (b) Foglia,
T. A.; Swern, D. J. Org. Chem. 1969, 34, 1680–1684.
18. Each amino acid, alanine, phenylalanine and valine, was
converted to 24, 25 and 26, respectively, based on the
following protocol. See: Luly, J. R.; Dellaria, J. F.;
Plattner, J. J.; Soderquist, J. L.; Yi, N. J. Org. Chem.
1987, 52, 1487–1492.
3. (a) Oh, J. S.; Hong, Y. S.; Kim, Y. G. J. Ind. Eng. Chem.
1997, 3, 326–334; Chem. Abstr. 1998, 129, 202696z; (b)
The predominant syn selectivity with the cyclic amides
was obtained by addition of TMEDA. See: Donohoe, T.
J.; Blades, K.; Helliwell, M.; Moore, P. R.; Winter, J. J.
G. J. Org. Chem. 1999, 64, 2980–2981 and references
cited therein; (c) Blades, K.; Donohoe, T. J.; Winter, J. J.
G.; Stemp, G. Tetrahedron Lett. 2000, 41, 4701–4704.
4. For recent examples, see: (a) Reetz, M. T.; Strack, T. J.;
Mutulis, F.; Goddard, R. Tetrahedron Lett. 1996, 37,
9293–9296; (b) Bra˚nalt, J.; Kvarnstro¨m, I.; Classon, B.;
Samuelsson, B.; Nillroth, U.; Danielson, U. H.; Karle´n,
A.; Hallberg, A. Tetrahedron Lett. 1997, 38, 3483–3486.
5. The syn selectivity was reported with the N-Boc allylic
amino olefins, and the Z-disubstituted olefin with several
different allylic amides or carbamates in i-PrOH. See:
Krysan, D. J.; Rockway, T. W.; Haight, A. R. Tetra-
hedron: Asymmetry 1994, 5, 625–632 and references cited
therein.
19. Evans, D. A.; Kaldor, S. W. J. Org. Chem. 1990, 55,
1698–1700.
20. (a) Dee, M. F.; Rosati, R. L. Bioorg. Med. Chem. Lett.
1995, 5, 949–952; (b) Dolle, R. E.; Herpin, T. F.;
Shimshock, Y. C. Tetrahedron Lett. 2001, 42, 1855–1858.
21. (a) Cha, J. K.; Christ, W. J.; Kishi, Y. Tetrahedron Lett.
1983, 24, 3943–3946 and 3947–3950; (b) Houk, K. N.;
Duh, H.-Y.; Wu, Y.-D.; Moses, S. R. J. Am. Chem. Soc.
1986, 108, 2754–2755; (c) Vedejs, E.; McClure, C. K. J.
Am. Chem. Soc. 1986, 108, 1094–1096.
22. For reviews, see: (a) Johnson, R. Chem. Rev. 1968, 68,
375–413; (b) Hoffmann, R. W. Chem. Rev. 1989, 89,
1841–1860.
6. (a) Song, B. S. M.E. Thesis, Seoul National University,
Feb. 1999; (b) Presented in part at the 222nd ACS