Angewandte
Chemie
Et2O into a solution of (R)12-BRCl6·12TFA in MeOH. Yield: 83%;
[a]2D2 = À6.19 (c = 0.2, MeOH); 1H NMR (600 MHz, CD3OD): d =
4.01 (s, 24H), 6.54 (br, 12H), 6.74 (m, 48H), 8.02 (s, 12H), 8.49 (s,
12H); 9.00 ppm (s, 12H); resonances for the hydroxy protons were
not observed as a result of exchange with the deuterium in the
solvent. A resonance for the CH at the stereogenic center was not
observed because it was obscured by the H2O resonance; HR-ESI-
MS: m/z calcd for (C66H52Cl2N10O8)3Zn6(CF3CO2)12: 5300.8528; found
Chem. 2005, 117, 1480 – 1501; Angew. Chem. Int. Ed. 2005, 44,
1456 – 1477; h) C. Dietrich-Buchecker, B. X. Colasson, J.-P.
Sauvage, Top. Curr. Chem. 2005, 249, 261 – 283.
[3] J.-C. Chambron, C. Dietrich-Buchecker, G. Rapenne, J.-P.
Sauvage, Chirality 1998, 10, 125 – 133.
[4] a) C. Liang, K. Mislow, J. Math. Chem. 1995, 16, 27 – 34; b ) C.
Liang, K. Mislow, J. Math. Chem. 1995, 18, 1 – 24; c) K. Mislow,
Top. Stereochem. 1999, 22, 1 – 82.
(%): 1653.5458 (90) [MÀ3TFA]3+, 1211.9171 (100) [MÀ4TFA]4+
,
[5] a) J.-C. Chambron, D. K. Mitchell, J.-P. Sauvage, J. Am. Chem.
Soc. 1992, 114, 4625 – 4631; b) S. Ottens-Hildebrandt, T.
Schmidt, J. Harren, F. Vögtle, Liebigs Ann. 1995, 1855 – 1860;
c) C. Yamamoto, Y. Okamoto, T. Schmidt, R. Jäger, F. Vögtle, J.
Am. Chem. Soc. 1997, 119, 10547 – 10548; d) A. Mohry, F.
Vögtle, M. Nieger, H. Hupfer, Chirality 2000, 12, 76 – 83; e) C.
Reuter, A. Mohry, A. Sobanski, F. Vögtle, Chem. Eur. J. 2000, 6,
1674 – 1682; f) A. Hori, A. Akasaka, K. Biradha, S. Sakamoto, K.
Yamaguchi, M. Fujita, Angew. Chem. 2002, 114, 3403 – 3406;
Angew. Chem. Int. Ed. 2002, 41, 3269 – 3272; g) C. P. McArdle, S.
Van, M. C. Jennings, R. J. Puddephatt, J. Am. Chem. Soc. 2002,
124, 3959 – 3965; h) A. Hori, H. Kataoka, A. Akasaka, T. Okano,
M. Fujita, J. Polym. Sci. Part A 2003, 41, 3478 – 3485; i) Recently,
inherently chiral rotaxanes were discussed in the literature: see
P. Mobian, N. Banerji, G. Bernardinelli, J. LaCour, Org. Biomol.
Chem. 2006, 4, 224 – 231.
947.1281 (24) [MÀ5TFA]5+, 769.9425 (6) [MÀ6TFA]6+
.
(R)12-BRCl6H24: The ZnII-containing BR complex (R)12-
BRCl6·12TFA (50 mg, 0.01 mmol) was dissolved in anhydrous
EtOH under an Ar atmosphere at 228C. NaBH4 (15 mg, 0.4 mmol)
was added in one portion. The reaction mixture became cloudy
immediately. It was stirred at 228C for 5 days. The reaction was then
quenched by the addition of H2O (5 mL), and the mixture was treated
with an excess of ethylenediamine tetraacetic acid (EDTA; 175 mg)
and heated under reflux for 30 min. Thereafter, the reaction mixture
was allowed to cool down to room temperature and the solvents were
removed under reduced pressure. The crude product was suspended
in H2O (15 mL) and filtered. The white filter cake was washed with
H2O (10 5 mL) to remove excess of salts and then finally with Et2O
(3 5 mL). This procedure afforded 26 mg of the crude product as a
white solid containing both the reduced (R)12-BRCl6H24 and the free
macrocycle in
a 1.0:1.8 molar ratio, as determined from the
1
[6] Defined as “topologically achiral in 3-space”, amphicheiral is a
term that was introduced in 1877 by the Scottish physicist Peter
Guthrie Tait, one of the pioneers of knot theory. With its original
spelling intact, amphicheiral is still widely used in current
mathematical literature on topology. See Ref. [4c].
integration of the resonances in the H NMR spectrum. Therefore,
this observation suggests that approximately 53% of the (R)12-
BRCl6·12TFA followed a pathway in which all 12 imine bonds were
reduced and the three rings remained interlocked to produce (R)12-
BRCl6H24. The remaining 47% followed a pathway in which at least
one of the rings was cleaved during the borohydride reduction to
produce the two reduced macrocycles and one linear fragment. (R)12-
BRCl6H24 and the component macrocyle mixture exhibited low
solubilities in most solvents and therefore had to be used as the crude
mixture. [a]2D2 = À5.1 (c = 0.1, MeOH); selected 1H NMR data
(600 MHz, CD3SOCD3): d = 3.59 (s, 24H), 3.70 (s, 24H), 4.24 (dd,
J = 4.5, 1.3 Hz, 12H), 4.10 (bs, 12H), 6.38 (m, 12H), 6.70 (d, J =
9.0 Hz, 24H), 7.01 (d, J = 9.0 Hz, 24H), 7.28 (s, 12H), 7.46 (d, J =
2.4 Hz, 12H), 7.89 ppm (d, J = 6 Hz, 12H) (see Supporting Informa-
tion for full assignments). MALDI-MS: m/z calcd for (C66H60N10O8)3:
1256.4; found: 1255.3 (100%) [3M+H+Na]+.
[7] a) M. Kodaka, J. Am. Chem. Soc. 1993, 115, 3702 – 3705; b) E.
Yashima, T. Matsushima, Y. Okamoto, J. Am. Chem. Soc. 1997,
119, 6345 – 6359; c) M. Asakawa, P. R. Ashton, W. Hayes, H. M.
Janssen, E. W. Meijer, S. Menzer, D. Pasini, J. F. Stoddart, A. J. P.
White, D. J. Williams, J. Am. Chem. Soc. 1998, 120, 920 – 931;
d) J.-C. Meillon, N. Voyer, E. Biron, F. Sanschagrin, J. F.
Stoddart, Angew. Chem. 2000, 112, 147 – 149; Angew. Chem.
Int. Ed. 2000, 39, 143 – 145; e) M. Asakawa, G. Brancato, M.
Fanti, D. A. Leigh, T. Shimizu, A. M. Z. Slawin, J. K. Y. Wong, F.
Zerbetto, S. Zhang, J. Am. Chem. Soc. 2002, 124, 2939 – 2950.
[8] a) P. Hayoz, A. von Zelewsky, H. Stoeckli-Evans, J. Am. Chem.
Soc. 1993, 115, 5111 – 5114; b) U. Knof, A. von Zelewsky, Angew.
Chem. 1999, 111, 312 – 333; Angew. Chem. Int. Ed. 1999, 38, 302 –
322.
Received: March 2, 2006
[9] M. Koizumi, C. Dietrich-Buchecker, J.-P. Sauvage, Eur. J. Org.
Chem. 2004, 770 – 775.
[10] a) K. S. Chichak, S. J. Cantrill, A. R. Pease, S.-H. Chiu, G. W. V.
Cave, J. L. Atwood, J. F. Stoddart, Science 2004, 304, 1308 – 1312;
b) K. S. Chichak, A. J. Peters, S. J. Cantrill, J. F Stoddart, J. Org.
Chem. 2005, 70, 7956 – 7962.
[11] a) J. S. Siegel, Science 2004, 304, 1256 – 1258; b) C. A. Schalley,
Angew. Chem. 2004, 116, 4499 – 4501; Angew. Chem. Int. Ed.
2004, 43, 4399 – 4401; c) S. J. Cantrill, K. S. Chichak, A. J. Peters,
J. F. Stoddart, Acc. Chem. Res. 2005, 38, 1 – 9; d) D. H. Busch,
Top. Curr. Chem. 2005, 249, 1 – 65; e) Borromean rings have
been identified in the solid-state superstructures of a number of
interwoven supramolecular architectures: see, for example: R.
Liantonio, P. Metrangolo, F. Meyer, T. Pilati, W. Navarrini, G.
Resnati, Chem. Commun. 2006, 1819 – 1821, and references
therein.
Keywords: chirality · Schiff bases · self-assembly ·
supramolecular chemistry · template synthesis
.
[1] a) Templated Organic Synthesis (Eds.: F. Diederich, P. J. Stang),
Wiley-VCH, Weinheim, 2000; b) G. A. Breault, C. A. Hunter,
P. C. Mayers, Tetrahedron 1999, 55, 5265 – 5293; c) T. J. Hubin,
D. H. Busch, Coord. Chem. Rev. 2000, 200, 5 – 52; d) J. F.
Stoddart, H.-R. Tseng, Proc. Natl. Acad. Sci. USA 2002, 99,
4797 – 4800; e) M.-J. Blanco, J.-C. Chambron, M. C. JimØnez, J.-
P. Sauvage, Top. Stereochem. 2003, 23, 125 – 173; f) F. Aricó, J. D.
´
Badjic, S. J. Cantrill, A. H. Flood, K. C.-F. Leung, Y. Liu, J. F.
Stoddart, Top. Curr. Chem. 2005, 249, 203 – 259.
[2] a) G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press,
New York, 1971; b) D. B. Amabilino, J. F. Stoddart, Chem. Rev.
1995, 95, 2725 – 2828; c) T. J. Hubin, A. G. Kolchinski, A. L.
Vance, D. H. Busch, Adv. Supramol. Chem. 1999, 5, 237 – 357;
[12] K. S. Chichak, S. J. Cantrill, J. F. Stoddart, Chem. Commun. 2005,
3391 – 3393.
d) Molecular Catenanes, Rotaxanes and Knots:
A Journey
[13] A. J. Peters, K. S. Chichak, S. J. Cantrill, J. F. Stoddart, Chem.
Commun. 2005, 3394 – 3396; we proposed therein that Borro-
mean ring compounds that are assembled using metal ions, and
that retain these metal ions as an intrinsic part of their structure,
be referred to as “Borromeates”. Furthermore, upon removal of
Through the World of Molecular Topology (Eds.: J.-P. Sauvage,
C. Dietrich-Buchecker), Wiley-VCH, Weinheim, 1999; e) S. J.
Cantrill, A. R. Pease, J. F. Stoddart, J. Chem. Soc. Dalton Trans.
2000, 3715 – 3734; f) L. Raehm, D. G. Hamilton, J. K. M. Sand-
ers, Synlett 2002, 1742 – 1761; g) O. Lukin, F. Vögtle, Angew.
Angew. Chem. Int. Ed. 2006, 45, 4099 –4104
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4103