nanoparticles along the nanostructured gel fibers of peptide
1-toluene gels. Such materials may be important for the future
development of nanostructured advanced materials from the
conjugates of tyrosine containing oligopeptide based smart gels
and Au/Ag nanoparticles, which may open up applications in the
promising field of supramolecular devices. Gels containing useful
chemical entities like tyrosine make themselves suitable for the
applications, such as in situ formation of gold and silver
nanoparticles with different shapes and sizes without any reducing
and stabilizing agents and this can be utilized to make smart gels
containing useful functionalities for the in situ preparation and
stabilization of metal nanoparticles within the gel network
structure in future.
Fig. 4 (a) TEM image of gold nanoparticles within the gel network
structure of peptide 3–methanol–water (1 : 1) gel and (b) magnified TEM
image of gold nanoparticles showing hexagonal and spherical morphology.
We acknowledge the DST, New Delhi, India for financial
assistance Project No (SR/S5/OC-29/2003). S. Ray and A. K. Das
wish to acknowledge the CSIR, New Delhi, India. We gratefully
acknowledge the Nanoscience and technology initiative of
Department of Science and Technology of Govt. of India, New
Delhi for using the TEM facility.
Notes and references
1 N. M. Sangeetha and U. Maitra, Chem. Soc. Rev., 2005, 34, 821.
2 K. J. C. van Bommel, A. Friggeri and S. Shinkai, Angew. Chem., Int.
Ed., 2003, 42, 980.
3 Y. Ono, K. Nakashima, M. Sano, Y. Kanekiyo, K. Inoue, J. Hojo and
S. Shinkai, Chem. Commun., 1998, 1477; J. H. Jung, Y. Ono and
S. Shinkai, Angew. Chem., Int. Ed., 2000, 39, 1862; K. Sugiyasu,
S. Tamura, M. Takeuchi, D. Berthier, I. Huc, R. Oda and S. Shinkai,
Chem. Commun., 2002, 1212.
Fig. 5 (a) TEM image of silver nanoparticles embedded in a spherical
sponge-like gel network structure of peptide 3–methanol–water (1 : 1) gel
and (b) TEM image of these silver nanoparticles at higher magnification.
formation of hexagonal gold nanoparticles within the gel phase.
Fig. 5 shows the TEM images of silver nanoparticles (with an
average diameter of 2–10 nm) formed within the methanol–water
gel of peptide 3. A characteristic EDX profile for silver nano-
particles is given in ESI Fig. S12c.{ From X-ray diffraction studies
of the gel and gel–metal nanoparticle composite, it was observed
that gold/silver nanoparticle embedded peptide gel network struc-
tures are similar to the respective peptide gel network structure
without the presence of the gold/silver nanoparticles (ESI Fig.
S13{). In order to understand the role of the tyrosine residue in the
reduction of Au(III), we have synthesized and studied another
tripeptide Boc–Ala-Phe-Ala–OMe (AFA) without any tyrosine
residue. AFA forms effective organogels in toluene, but it failed to
reduce the HAuCl4 under similar conditions to produce the gold
nanoparticles within the gel network. This result convincingly
demonstrates that the tyrosine residue has a definite role for the
preparation of gold/silver nanoparticles by in situ reduction.
We have successfully demonstrated the in situ preparation of
gold and silver nanoparticles into a gel network structure using
tyrosine containing oligopeptide based organogelators. The
tyrosine residue(s) of gelator peptides have been successfully
utilized to reduce Au+3/Ag+ into colloid Au0/Ag0 nanoparticles and
after the reduction, the gelator peptides retain their gelation
properties intact. Hence, these nascent metal nanoparticles are
trapped and stabilized within the supramolecular gel-phase
network. This is an wonderful demonstration of the exploitation
of tyrosine containing gel-forming oligopeptides for the in situ
preparation of gold and silver nanoparticles and their concomitant
stabilization within the supramolecular assemblies. Another
remarkable feature is that the alignment of in situ prepared gold
4 S. Kobayashi, K. Hanabusa, N. Hamasaki, M. Kimura, H. Shirai and
S. Shinkai, Chem. Mater., 2000, 12, 1523; S. Kobayashi, N. Hamasaki,
M. Suzuki, M. Kimura, H. Shirai and K. Hanabusa, J. Am. Chem. Soc.,
2002, 124, 6550.
5 E. D. Sone, E. R. Zubarev and S. I. Stupp, Angew. Chem., Int. Ed.,
2002, 41, 1705.
6 G. Gundiah, S. Mukhopadhyay, U. G. Tumkurkar, A. Govindaraj,
U. Maitra and C. N. R. Rao, J. Mater. Chem., 2003, 13, 2118.
7 Y. Yang, M. Suzuki, S. Owa, H. Shirai and K. Hanabusa, J. Mater.
Chem., 2006, 16, 1644.
8 P. C. Xue, R. Lu, Y. Huang, M. Jin, C. H. Tan, C. Y. Bao, Z. M. Wang
and Y. Y. Zhao, Langmuir, 2004, 20, 6470.
9 C. L. Chan, J. B. Wang, J. Yuan, H. Gong, Y. H. Liu and M. H. Liu,
Langmuir, 2003, 19, 9440.
10 M. Kimura, S. Kobayashi, T. Kuroda, K. Hanabusa and H. Shirai,
Adv. Mater., 2004, 16, 335.
11 C. S. Love, V. Chechik, D. K. Smith, K. Wilson, I. Ashworth and
C. Brennan, Chem. Commun., 2005, 1971.
12 P. K. Vemula and G. John, Chem. Commun., 2006, 2218.
13 Peptides were synthesized by conventional solution phase methodology
(M. Bodanszky and A. Bodanszky, The Practice of Peptide Synthesis,
Springer, New York, 1984, pp 1–282).
14 M. Reches and E. Gazit, Amyloid, 2004, 11, 819; A. Aggelli, M. Bell,
N. Boden, J. N. Keen, P. F. Knowles, T. C. B. MeLeish, M. Pitkeathly
and S. E. Radford, Nature, 1997, 386, 259; M. George, S. L. Snyder,
P. Terech, C. J. Glinka and R. G. Weiss, J. Am. Chem. Soc., 2003, 125,
10275; M. Suzuki, T. Sato, A. Kurose, H. Shirai and K. Hanabusa,
Tetrahedron Lett., 2005, 46, 2741; S. Malik, S. K. Maji, A. Banerjee and
A. K. Nandi, J. Chem. Soc., Perkin Trans. 2, 2002, 1177.
15 A. Swami, A. Kumar, M. D’Costa, R. Pasricha and M. Sastry, J. Mater.
Chem., 2004, 14, 2696; S. K. Bhargava, J. M. Booth, S. Agrawal,
P. Coloe and G. Kar, Langmuir, 2005, 21, 5949; P. R. Selvakannan,
A. Swami, D. Srisathiyanarayanan, P. S. Shirude, R. Pasricha,
A. B. Mandale and M. Sastry, Langmuir, 2004, 20, 7825.
16 M. F. Lengke, M. E. Fleet and G. Southam, Langmuir, 2006, 22, 2780;
C.-H. Kuo, T.-F. Chiang, L.-J. Chen and M. H. Huang, Langmuir,
2004, 20, 7820.
2818 | Chem. Commun., 2006, 2816–2818
This journal is ß The Royal Society of Chemistry 2006