Thiophenol-Mediated 1,5-Hydrogen AtomAbstraction
FULL PAPERS
2-Isopropyl-1-phenylsulfanylmethylspiro[4.5]decan-6-
one (15c): According to the general procedure, from 14c
(206 mg, 1 mmol). Flash chromatography (cyclohexane/t-
BuOMe, 95:5) gave 15c as a mixture of diastereomers in a
67:33 ratio; yield: 277 mg (88%). Major diastereomer:
1H NMR (400 MHz): d¼7.33–7.25 (m, 4H), 7.16–7.12 (m,
1H), 3.01 (dd, J¼10.7, 4.1 Hz, 1H), 2.91–2.82 (m, 1H), 2.82
(dd, J¼10.7, 9.2 Hz, 1H), 2.49–2.35 (m, 2H), 2.03–1.92 (m,
1H), 1.90–1.59 (m, 10H), 1.41–1.32 (m, 1H), 0.91 (d, J¼
6.8 Hz, 3H), 0.81 (d, J¼Hz, 3H); 13C NMR (100 MHz): d¼
213.7, 138.1, 128.9 (2C), 128.6 (2C), 125.6, 58.7 (Cq), 49.8,
43.2, 39.8, 36.3, 35.0, 31.2, 29.4, 26.0, 24.4, 22.5, 21.6, 17.0;
HR-MS: calcd. for C20H28OS [Mþ]: 316.1861; found: 316.1862.
[5] D. P. Curran, W. Shen, J. Am. Chem. Soc. 1993, 115, 6051.
[6] M. Yokota, M. Toyota, M. Ihara, Chem. Commun. 2003,
3, 422.
[7] M. Sannigrahi, D. L. Mayhew, D. L. J. Clive, J. Org.
Chem. 1999, 64, 2776.
[8] D. L. J. Clive, W. Yang, A. C. MacDonald, Z. Wang, M.
Cantin, J. Org. Chem. 2001, 66, 1966.
[9] U. Wille, L. Lietzau, Tetrahedron 1999, 55, 10119.
[10] A. Stademann, U. Wille, Aust. J. Chem. 2004, 57, 1055.
[11] U. Wille, O. Krüger, A. Kirsch, U. Lüning, Eur. J. Org.
Chem. 1999, 3185.
[12] E. I. Heiba, R. M. Dessau, J. Am. Chem. Soc. 1967, 89,
3772.
[13] S. Bogen, L. Fensterbank, M. Malacria, J. Org. Chem.
1999, 64, 819.
[14] A. Martinez-Grau, D. P. Curran, Tetrahedron Lett. 1997,
38, 5679.
[15] E. Bosch, M. D. Bachi, J. Org. Chem. 1993, 58, 5581.
[16] B. Alcaide, I. M. Rodriguez-Campos, J. Rodriguez-Lo-
pez, A. Rodriguez-Vicente, J. Org. Chem. 1999, 64, 5377.
tert-Butyl-(dimethylsilyl) 1-Methyl-4-
[(phenylsulfanyl)methyl]spiro[4.4]non-1-yl Ether
(17d)
To a solution of 16d (140 mg, 0.5 mmol) and AIBN (41 mg,
0.25 mmol) in t-BuOH (50 mL) were added during 24 h
PhSH (55 mg, 0.5 mmol) and AIBN (123 mg, 0.75 mmol)
both via syringe pump as two solutions in benzene (2ꢀ
2 m L).t-BuOH was evaporated and the residue purified by
flash chromatography (hexane/EtOAc, 100:1) to afford 17d
as a 60:40 mixture of two diastereomers; yield: 160 mg
(82%); colorless oil; anal. calcd. for C23H38OSSi (390.70): C
70.71, H 9.80; found: C 70.76, H 9.78.
´ `
[17] F. Beaufils, F. Denes, P. Renaud, Angew. Chem. Int. Ed.
2005, 44, 5273.
[18] D. Crich, in: Organosulfur Chemistry, Synthetic Aspects,
(Ed.: P. Page), Academic Press, San Diego, 1995, p. 49.
[19] M. P. Bertrand, C. Ferreri, in: Radicals in Organic Syn-
thesis, Vol. 2, (Eds.: P. Renaud, M. P. Sibi), Wiley-VCH,
Weinheim, 2001, p. 485.
[20] O. Miyata, Y. Ozawa, I. Ninomiya, T. Naito, Tetrahedron
2000, 56, 6199.
[21] O. Miyata, T. Naito, C. R. Acad. Sci. Paris Chimie 2001,
401.
Acknowledgements
[22] O. Miyata, K. Muroya, T. Kobayashi, R. Yamanaka, S.
Kajisa, J. Koide, T. Naito, Tetrahedron 2002, 58, 4459.
[23] S. D. Burke, K. W. Jung, Tetrahedron Lett. 1994, 35, 5837;
for an early investigation, see: J. Griffiths, J. A. Murphy,
Tetrahedron 1992, 48, 5543.
We thank the Swiss national science foundation (Grant 20–
103627), the Roche Foundation (post-doctoral fellowship to
FD) and the University of Berne for supporting this work.
References
´ `
[24] F. Beaufils, F. Denes, P. Renaud, Org. Lett. 2004, 6, 2563.
[25] P. Renaud, F. Beaufils, L. Feray, K. Schenk, Angew.
Chem. Int. Ed. 2003, 42, 4230.
[1] For general reviews on radical reactions, see: B. Giese, in:
Radicals in Organics Synthesis: Formation of Carbon-
Carbon Bonds, Pergamon: Oxford, 1988; D. P. Curran,
in: Comprehensive Organic Synthesis, (Eds.: B. M. Trost,
I. Fleming, M. F. Semmelhack), Pergamon: Oxford, 1991,
Vol. 4, pp 715 and 779; W. B. Motherwell, D. Crich, in:
Free Radical Chain Reactions in Organic Synthesis; Aca-
demic Press: London, 1992; J. Fossey, D. Lefort, J. Sorba,
in: Free Radicals in Organic Synthesis, Wiley: Chichester,
1995; Radicals in Organic Synthesis, (Eds.: P. Renaud,
M. P. Sibi), Wiley-VCH: Weinheim, 2001; S. Zard, in:
Radical Reactions in Organic Synthesis, Oxford Universi-
ty Press: Oxford, 2003.
[2] For general reviews on radical hydrogen transfer, see: L.
Feray, N. Kuznetzov, P. Renaud, in: Radicals in Organic
Synthesis, (Eds.: P. Renaud, M. P. Sibi), Wiley-VCH:
Weinheim, 2001, Vol. 2, p 246; J. Robertson, J. Pillai,
R. K. Lush, Chem. Soc. Rev. 2001, 30, 94.
[3] D. P. Curran, K. Dooseop, L. Hong Tao, S. Wang, J. Am.
Chem. Soc. 1988, 110, 5900.
[4] D. P. Curran, D. Kim, C. Ziegler, Tetrahedron 1991, 47,
6189.
[26] Traces of thiophenol are presumably generated from the
phenylthiyl radical via hydrogen atomabstraction.
[27] A rate constant for the reduction of alkyl radicals by thi-
ophenol of 1.3ꢀ108 M–1 s–1 (258C) has been reported:
J. A. Franz, B. A. Bushaw, M. S. Alnajjar, J. Am. Chem.
Soc. 1989, 111, 268. A rate constant for the reduction
of primary alkyl radical by Bu3SnH of 6.4ꢀ106 M–1 s–1
(808C) has been measured: C. Chatgilialoglu, M. New-
comb, Adv. Organomet. Chem. 1999, 44, 67. An absolute
rate constant of 7.88 M–1 s–1 (258C) has been reported for
the reduction of aryl radicals by Bu3SnH, to the best of
our knowledge, no rate constant has been determined
for the reduction of aryl radicals by thiophenol: S. J. Gar-
den, D. V. Avila, A. L. J. Beckwith, V. W. Bowry, K. U.
Ingold, J. Lusztyk J. Org. Chem. 1996, 61, 805.
[28] I. De Riggi, J. M. Surzur, M. P. Bertrand, A. Archavlis,
R. Faure, Tetrahedron 1990, 46, 5285.
[29] M. E. Kuehne, R. E. Damon, J. Org. Chem. 1977, 42,
1825.
Adv. Synth. Catal. 2005, 347, 1587 – 1594
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
asc.wiley-vch.de
1593