2960
T. Wang et al. / Bioorg. Med. Chem. Lett. 21 (2011) 2958–2961
Table 3
see whether these compounds are efficacious in a cell line that car-
ries such a mutation. Compound 1c was tested in a SET-2 cell line,
which is heterozygous to JAK2 V617F mutation, and did show
Rat microsomal stability and rat pharmacokinetic profile of lead compoundsa
Compd Clint (lL/min/mg) CL (mL/min/kg) T1/2 (h) Vdss (L/kg) F (%)
growth inhibition (GI50 = 0.033 l
M).25 The PK and PD coupled with
1c
1d
1e
17
5
7.5
4.8
2.3
5.7
2.2
2.7
2.6
0.84
0.52
44
39
47
the cellular potency shown above suggested that compounds such
as 1c (or 1d) might be useful probe compounds in disease models
with this key mutation.
5
a
Han Wistar rat male; 10 mg/kg po (0.1% HPMC); 3 mg/kg iv (DMA/PEG/
In summary, a series of 6-aminopyrazolyl-pyridine-3-carbonitr-
iles has been evaluated as JAK2 kinase inhibitors. Compounds such
as 1c–e offered the potential to test the modulation of JAK2 kinase
activity in vivo.
saline = 40:40:20).
Acknowledgments
The authors would like to thank Ethan Hoffmann for PK stud-
ies, David Ayres for PK sample analysis and Array BioPharma
team (John Josey, Yongxin Han, Bin Wang and Peter Mohr) for
synthetic support. Special thanks to Susan Ashwell and Dennis
Huszar for useful recommendations during the preparation of
this letter.
References and notes
1. Campbell, P. J.; Green, A. R. N. Eng. J. Med. 2006, 355, 2452.
2. Morgan, K. J.; Gilliland, D. G. Annu. Rev. Med. 2008, 59, 213.
3. James, C.; Ugo, V.; Le Couedic, J. P.; Staerk, J.; Delhommeau, F.; Lacout, C.;
Garcon, L.; Raslova, H.; Berger, R.; Bennacaur-Griscelli, A.; Villeval, J. L.;
Constantinescu, S. N.; Casadevall, N.; Vainchenker, W. Nature 2005, 434, 1144.
4. Baxter, E. J.; Scott, L. M.; Campbell, P. J.; East, C.; Fourouclas, N.; Swanton, S.;
Vassiliou, G. S.; Bench, A. J.; Boyd, E. M.; Curtin, N.; Scott, M. A.; Erber, W. N.;
Green, A. R. Lancet 2005, 365, 1054.
5. Levine, R. L.; Wadleigh, M.; Cools, J.; Ebert, B. L.; Wernig, G.; Huntly, B. J. P.;
Boggon, T. J.; Wlodarska, I.; Clark, J. J.; Moore, S.; Adelsperger, J.; Koo, S.; Lee, J.
C.; Gabriel, S.; Mercher, T.; D’Andrea, A.; Fröhling, S.; Döhner, K.; Marynen, P.;
Vandenberghe, P.; Mesa, R. A.; Tefferi, A.; Griffin, J. D.; Eck, M. J.; Sellers, W. R.;
Meyerson, M.; Golub, T. R.; Lee, S. J.; Gilliland, D. G. Cancer Cell 2005, 7, 387.
6. Rane, S. G.; Reddy, E. P. Oncogene 2000, 19, 5662.
Figure 2. Pharmacodynamic effect of compound 1d on PSTAT5 inhibition (blue) in
the Ba/F3 TEL-JAK2 mouse model and relationship with plasma pharmacokinetics
(concentration shown in red bars). PSTAT5 inhibitions (n = 3 for each dose and each
time point) are calculated using vehicle and control inhibitor for maximum and
minimum value estimation. Mice used in these studies were maintained under
specific pathogen-free conditions and were used in compliance with protocols
approved by the Institutional Animal Care and Use Committees of AstraZeneca,
which conform to institutional and national regulatory standards on experimental
animal usage.
7. Vainchenker, W.; Constantinescu, S. N. Hematol. Am. Soc. Hematol. Educ.
Program 2005, 195–200.
8. Tefferi, A.; Gilliland, D. G. Cell Cycle 2005, 4, 1053.
9. Tefferi, A.; Vardiman, J. W. Leukemia 2008, 22, 14.
10. Nelson, M. E.; David, P.; Steensma, D. P. Leukemia Lymphoma 2006, 47, 177.
11. Thompson, J. E.; Cubbon, R. M.; Cummings, R. T.; Wicker, L. S.; Frankshun, R.;
Cunningham, B. R.; Cameron, P. M.; Meinke, P. T.; Liverton, N.; Weng, Y.;
DeMartino, J. A. Bioorg. Med. Chem. Lett. 2002, 12, 1219.
12. Hexner, E. O.; Serdikoff, C.; Jan, M.; Swider, C. R.; Robinson, C.; Yang, S.;
Angeles, T.; Emerson, S. G.; Carroll, M.; Ruggeri, B.; Dobrzanski, P. Blood 2008,
111, 5663.
13. Karaman, M. W.; Herrgard, S.; Treiber, D. K.; Gallant, P.; Atteridge, C. E.;
Campbell, B. T.; Chan, K. W.; Ciceri, P.; Davis, M. I.; Edeen, P. T.; Faraoni, R.;
Floyd, M.; Hunt, J. P.; Lockhart, D. J.; Milanov, Z. V.; Morrison, M. J.; Pallares, G.;
Patel, H. K.; Pritchard, S.; Wodicka, L. M.; Zarrinkar, P. P. Nat. Biotechnol. 2008,
26, 127.
14. Manshouri, T.; Quintas-Cardama, A.; Nussenzveig, R. H.; Gaikwad, A.; Estrov,
Z.; Prchal, J.; Cortes, J. E.; Kantarjian, H. M.; Verstovsek, S. Cancer Sci. 2008, 99,
1265.
15. Purandare, A. V.; Lorenzi, M. V.; Lombardo, L. J. Annu. Rep. Med. Chem. 2010, 45,
211.
16. Verstovsek, S.; Pardanani, A. D.; Shah, N. P.; Sokol, L.; Wadleigh, M.; Gilliland, D.
G.; List, A. F.; Tefferi, A.; Kantarjian, H. M.; Bui, L. A.; Clary, D. O. Blood (ASH
Annual Meeting Abstracts) 2007, 110, Abst. 553.
17. Geron, I.; Abrahamsson, A. E.; Barroga, C. F.; Kavalerchik, E.; Gotlib, J.; Hood, J.
D.; Durocher, J.; Mak, C. C.; Noronha, G.; Soll, R. M.; Tefferi, A.; Kaushansky, K.;
Catriona, H. M.; Jamieson, C. H. M. Cancer Cell 2008, 13, 321.
18. Pissot-Soldermann, C.; Gerspacher, M.; Furet, P.; Gaul, C.; Holzer, P.; McCarthy,
C.; Radimerski, T.; Regnier, C. H.; Baffert, F.; Drueckes, P.; Tavares, G. A.;
Vangrevelinghe, E.; Blasco, F.; Ottaviani, G.; Ossola, F.; Scesa, J.; Reetz, J. Bioorg.
Med. Chem. Lett. 2010, 20, 2609.
to the lower lipophilicity of a pyridine ring (in 1d and e) compared
to a phenyl group (in 1c).
The pharmacokinetic profile of the lead compounds prompted
us to investigate the pharmacodynamic effects of 1d in splenic tis-
sues of nude mice bearing TEL-JAK2 transfected Ba/F3 cells. As
shown in Figure 2, three different doses (10, 5 and 2.5 mg/kg) were
given and the percentage (%) inhibition of STAT5 phosphorylation
(PSTAT5) was determined at 2 and 6 h post dose. STAT5 is the
downstream target of JAK2 and an essential component in the
JAK-STAT signaling pathway. After 10 mg/kg oral dose, compound
1d showed complete inhibition of STAT5 phosphorylation for at
least 2 h which decreased to 54% at 6 h. Similar trends were ob-
served at the two lower doses (5 and 2.5 mg/kg). When different
doses were compared at 2 h time point, the PSTAT5 inhibitions
exhibited a dose-dependent pattern. The plasma concentrations
of the drug correlated roughly with the PSTAT5 inhibition level
in this study (Fig. 2). For example, a 10 mg/kg oral dose resulted
in a 1096 ng/mL total plasma concentration of the compound at
2 h, decreasing to 328 ng/mL at 6 h. For simplicity, it is assumed
here that the mouse free unbound level is similar to that measured
in human plasma (fu = 5.3%) and the cellular proliferation GIC50
tracks the PSTAT5 EC50 (data not shown), the free drug concentra-
19. Verstovsek, S. Clin. Cancer Res. 2010, 16, 1988.
20. Kiss, R.; Sayeski, P. P.; Keseru, G. M. Expert Opin. Ther. Patents 2010, 20, 471.
21. Ruben, A.; Mesa, R. A.; Tefferi, A. Expert Opin. Emerging Drugs 2009, 14, 471.
22. Ioannidis, S.; Lamb, M. L.; Davies, A. M.; Almeida, L.; Su, M.; Bebernitz, G.; Ye,
M.; Bell, K.; Alimzhanov, M.; Zinda, M. Bioorg. Med. Chem. Lett. 2009, 19, 6524.
23. Ioannidis, S.; Lamb, M. L.; Almeida, L.; Guan, H.; Peng, B.; Bebernitz, G.; Bell, K.;
Alimzhanov, M.; Zinda, M. Bioorg. Med. Chem. Lett. 2010, 20, 1669.
24. Ioannidis, S.; Lamb, M. L.; Wang, T.; Almeida, L.; Block, M. H.; Davies, A. M.;
Peng, B.; Su, M.; Zhang, H.-J.; Hoffmann, E.; Rivard, C.; Green, I.; Howard, T.;
Pollard, H.; Read, J.; Alimzhanov, M.; Bebernitz, G.; Bell, K.; Ye, M.; Huszar, D.;
Zinda, M. J. Med. Chem. 2011, 54, 262.
tion at 6 hours time point with this dose would be 0.049
lM, still
above its cellular GIC50 (0.036 M). This data suggested that the
l
10 mg/kg dose under an optimized dosing schedule would provide
adequate drug coverage to test the therapeutic potential of JAK2
inhibition in mice.
As discussed previously, JAK2 V617F is the causative mutation
for a major population of MPNs, and it is therefore interesting to