LETTER
Nucleophilic Substitution on Bicyclo[3.1.0]hexane Sulfonates
(8) 2-Vinylcyclohex-2-en-1-yl formate (16)
1409
Finally, and interestingly, the nucleophilic substitution
performed using sulfonamide 20 provided only cyclo-
propylidene 2113 as a 62:38 inseparable mixture of dia-
stereomers (Scheme 10).
1H NMR (250 MHz, CDCl3): d = 8.09 (s, 1 H), 6.22 (dd,
J = 17.5, 11.0 Hz, 1 H), 6.08 (t, J = 5.4 Hz, 1 H), 5.81 (m,
1 H), 5.09 (d, J = 17.5 Hz, 1 H), 4.98 (d, J = 11.0 Hz, 1 H),
2.35–1.80 (m, 3 H), 1.80–1.60 (m, 3 H). 13C NMR (90 MHz,
CDCl3): d = 160.6, 136.8, 135.1, 133.4, 111.5, 64.8, 28.5,
25.5, 17.0. IR (neat): 2945, 1718, 1647 cm–1. MS (EI):
m/z (%) = 106 (95), 91 (100), 79 (35), 78 (45). MS (CI,
NH3): m/z (%) = 170 (100) [M+ + 18]. HRMS (ES+):
m/z calcd for C15H22O4Na: 289.1410; found: 289.1416.
(9) Oshima, M.; Yamayaki, H.; Shimizu, I.; Nisar, M.; Tsuji, J.
J. Am. Chem. Soc. 1989, 111, 6280.
O
Pd(dba)2, PPh3
S
exo-7
O
(R)-20, NaH, THF, reflux
N
(10) Diethyl (2-Vinylcyclohex-2-en-1-yl)malonate (18)
1H NMR (360 MHz, CDCl3): d = 6.21 (dd, J = 17.6, 11.2 Hz,
1 H), 5.87 (t, J = 4.0 Hz, 1 H), 5.11 (d, J = 17.6 Hz, 1 H),
4.91 (d, J = 11.2 Hz, 1 H), 4.19 (q, J = 7.2 Hz, 2 H), 4.09 (q,
J = 7.2 Hz, 2 H), 3.62 (d, J = 7.9 Hz, 1 H), 3.31 (m, 1 H),
2.25–2.10 (m, 2 H), 1.90–1.65 (m, 4 H), 1.28 (t, J = 7.2 Hz,
3 H), 1.24 (q, J = 7.2 Hz, 3 H). 13C NMR (63 MHz, CDCl3):
d = 159.6, 138.6, 131.1, 114.3, 61.3, 61.1, 55.0, 54.8, 33.0,
25.7, 25.2, 18.0, 14.1, 13.9. IR (neat): 2936, 1732, 1641
cm–1. MS (EI): m/z (%) = 175 (20), 161 (67), 160 (78), 133
(44), 119 (20), 115 (24), 106 (100), 91 (93), 79 (25), 78 (34).
MS (CI, NH3): m/z (%) = 267 (100) [M+ + 1], 284 (52) [M+
+ 18]. HRMS (ES+): m/z calcd for C15H22O4Na: 289.1417;
found: 289.1416.
21 (73%, 62:38)
O
(R)-20 =
S
O
HN
Scheme 10
In conclusion, we describe herein an efficient preparation
of both highly interesting vinylcyclohexene derivatives
and fused cyclopropylidene derivatives. Finally, in the nu-
cleophilic substitutions that we developed on such com-
pounds, it is shown that the configurations of the starting
sulfonates are not restrictive, as compared with previous
data from Schöllkopf. The extension of this efficient path-
way to other nucleophiles and towards enantioselective
syntheses is currently under investigation.
(11) Diethyl (2-Bicyclo[3.1.0]hex-6-ylideneethyl)malonate
(19)
1H NMR (360 MHz, CDCl3): d = 5.70 (t, J = 6.6 Hz, 1 H),
4.18 (q, J = 7.2 Hz, 4 H), 3.46 (t, J = 7.5 Hz, 1 H), 2.71 (dd,
J = 7.2, 6.6 Hz, 2 H), 1.92–1.65 (m, 8 H), 1.28 (t, J = 7.1 Hz,
3 H), 1.26 (t, J = 7.1 Hz, 3 H). 13C NMR (63 MHz, CDCl3):
d = 173.0, 132.9, 115.2, 61.3, 52.0, 31.0, 29.6, 29.4, 21.2,
20.7, 20.5, 14.0. IR (neat): 2938, 2863, 1750, 1733 cm–1. MS
(EI): m/z (%) = 175 (37), 161 (20), 147 (37), 119 (100), 118
(44), 117 (27), 106 (51), 105 (20), 101 (33), 92 (27), 91 (81),
79 (31). MS (CI, NH3): m/z (%) = 267 (67) [M+ + 1], 284
(100) [M+ + 18]. HRMS (ES+): m/z calcd for C15H22O4Na:
289.1417; found: 289.1415.
References and Notes
(1) Schöllkopf, U. Angew. Chem., Int. Ed. Engl. 1968, 7, 590.
(2) Lecornué, F.; Ollivier, J. Chem. Commun. 2003, 584.
(3) (a) Kulinkovich, O. Russ. Chem. Bull., Int. Ed. 2004, 53,
1065. (b) Kulinkovich, O. Eur. J. Org. Chem. 2004, 4517.
(4) Sylvestre, I.; Ollivier, J.; Salaün, J. Tetrahedron Lett. 2001,
4991.
(12) (a) Davidson, E. R.; Gajewski, J. J.; Shook, C. A.; Cohen, T.
J. Am. Chem. Soc. 1995, 117, 8495. (b) Shook, C. A.;
Romberger, M. L.; Jung, S.-H.; Xiao, M.; Sherbine, J. P.;
Zhang, B.; Lin, F.-T.; Cohen, T. J. Am. Chem. Soc. 1993,
115, 10754; and references cited therein. (c) McCullough,
D. W.; Cohen, T. Tetrahedron Lett. 1988, 29, 27.
(5) 6-Azido-1-vinylcyclohex-1-ene (15)
1H NMR (250 MHz, CDCl3): d = 6.33 (dd, J = 17.7, 10.9 Hz,
1 H), 6.06 (t, J = 3.9 Hz, 1 H), 5.30 (d, J = 17.7 Hz, 1 H),
5.08 (d, J = 10.9 Hz, 1 H), 4.12 (br s, 1 H), 2.32–2.00 (m, 3
H), 1.81–1.65 (m, 3 H). 13C NMR (63 MHz, CDCl3): d =
137.4, 134.2, 132.8, 111.8, 53.9, 29.0, 25.4, 17.4. IR (neat):
2943, 2100, 1643 cm–1. MS (EI): m/z (%) = 149 (4) [M+],
120 (31), 93 (69), 91 (66), 79 (100), 77 (35). HRMS: m/z
calcd for C8H11N3: 149.0952; found; 149.0950.
(d) Gajewski, J. J.; Chou, S. K. J. Am. Chem. Soc. 1977, 99,
5696.
(13) N-(2{(1R,5S)-Bicyclo[3.1.0]hex-6-ylidene}ethyl)-4-
methyl-N-[(1R)-1-phenylethyl] Benzenesulfonamide (21)
1H NMR (250 MHz, CDCl3): d = 7.73 (d, J = 7.0 Hz, 4 H),
7.35–7.20 (m, 14 H), 5.52 (t, J = 6.5 Hz, 1 H, minor), 5.48 (t,
J = 6.5 Hz, 1 H, major), 5.26 (q, J = 7.0 Hz, 1 H, major), 5.21
(q, J = 7.0 Hz, 1 H, minor), 3.90 (t, J = 6.5 Hz, 1 H, minor),
3.85 (t, J = 6.5 Hz, 1 H, major), 3.73 (d, J = 6.5 Hz, 1 H,
major), 3.68 (d, J = 6.5 Hz, 1 H, minor), 2.45 (s, 6 H), 1.80–
1.60 (m, 16 H), 1.49 (d, J = 7.0 Hz, 3 H, minor), 1.47 (d,
J = 7.0 Hz, 3 H, major). 13C NMR (63 MHz, CDCl3): d =
142.8, 140.3 (major), 140.2 (minor), 138.8 (major), 138.6
(minor), 136.8, 133.1, 131.9, 129.5, 129.2, 128.1, 128.0,
127.7, 127.5, 127.3, 127.1, 117.3 (major), 117.2 (minor),
55.5 (minor), 55.3 (major), 45.6 (minor), 45.3 (major), 29.5
(major), 29.3 (minor), 21.5 (minor), 21.3 (major), 20.9, 20.5,
17.6 (minor), 17.1 (major). IR (neat): 2939, 2863, 1599 cm–1.
MS (EI): m/z (%) = 381 (3.4) [M+], 276 (20), 207 (100), 155
(21), 120 (23), 105(69), 91 (33), 79 (20). HRMS: m/z calcd
for C23H27NO2S: 381.1757; found: 381.1752.
(6) Ngadjui, B.; Tamboue, H.; Ayafor, J. F.; Connolly, J.
Phytochemistry 1995, 39, 1249.
(7) (a) Kato, T.; Ishii, H.; Kawai, K.; Sawa, Y. Chem. Pharm.
Bull. 1984, 32, 2279. (b) Kuroda, S.; Akahane, A.; Itani, H.;
Nishimura, S.; Durhin, K.; Tenda, Y.; Sakane, K. Bioorg.
Med. Chem. 2000, 8, 55.
Synlett 2006, No. 9, 1407–1409 © Thieme Stuttgart · New York