C O M M U N I C A T I O N S
of the signals for the CBPQT4+ protons. The spectrum becomes
much simpler as the signals for these protons coalesce at higher
temperatures. At lower temperatures, the exchange processes
between all of the relevant protons slow yet further, allowing for
resolution of nonequivalent proton signals. Throughout the tem-
perature range investigated, the triazole resonance remains a sharp
singlet near δ ) 8.60 ppm, a reasonable value for triazole protons.
This observation suggests that the triazole does not compete with
DNP to bind with the CBPQT4+ ringsa hypothesis we are currently
investigating more thoroughly.
During this preliminary research, it has become apparent that,
as a result of using click chemistry as the covalent modification
step in rotaxane synthesis, it not only renders the simple donor-
acceptor [2]- and [3]rotaxanes (Schemes 1 and 2) much more
accessible but it also provides the opportunity to prepare respectable
quantities of more exotic mechanically interlocked compounds, such
as the branched [4]rotaxane (Scheme 3). The synthesis and
applications of these new materials to MEDs and NEMS will now
become part of the ongoing research efforts in our laboratories.
F. M.; Stoddart, J. F.; Venturi, M. Eur. J. Org. Chem. 2000, 591. (m)
Bermudez, V.; Capron, N.; Gase, T.; Gatti, F. G.; Kajzar, F.; Leigh, D.
A.; Zerbetto, F.; Zhang, S. W. Nature 2000, 406, 608. (n) Berna, J.; Leigh,
D. A.; Lubomska, M.; Mendoza, S. M.; Perez, E. M.; Rudolf, P.; Teobaldi,
G.; Zerbetto, F. Nat. Mater. 2005, 4, 704. (o) Kern, J.-M.; Raehm, L.;
Sauvage, J.-P.; Divisia-Blohorn, B.; Vidal, P. L. Inorg. Chem. 2000, 39,
1555. (p) Kinbara, K.; Aida, T. Chem. ReV. 2005, 105, 1377. (q) Kottas,
G. S.; Clarke, L. I.; Horinek, D.; Michl, J. Chem. ReV. 2005, 105, 1281.
(r) Poleschak, I.; Kern, J.-M.; Sauvage, J.-P. Chem. Commun. 2004, 474.
(s) Raehm, L.; Kern, J.-M.; Sauvage, J.-P. Chem.sEur. J. 1999, 5, 3310.
(t) Karlen, S. D.; Garcia-Garibay, M. A. Top. Curr. Chem. 2005, 102,
10793. (u) Garcia-Garibay, M. A. Proc. Natl. Acad. Sci. U.S.A. 2005,
102, 10771. (v) Perez, E. M.; Dryden, D. T. F.; Leigh, D. A.; Teobaldi,
G.; Zerbetto, F. J. Am. Chem. Soc. 2004, 126, 12210. (w) Chatterjee, M.
N.; Kay, E. R.; Leigh, D. A. J. Am. Chem. Soc. 2006, 128, 4058. (x)
Kelly, T. R. Acc. Chem. Res. 2001, 34, 514. (y) Fletcher, S. P.; Dumur,
F.; Pollard, M. M.; Feringa, B. L. Science 2005, 310, 80.
(3) (a) Ashton, P. R.; Goodnow, T. T.; Kaifer, A. E.; Reddington, M. V.;
Slawin, A. M. Z.; Spencer, N.; Stoddart, J. F.; Vicent, C.; Williams, D.
J. Angew. Chem., Int. Ed. Engl. 1989, 28, 1396. (b) Anelli, P.-L.; Spencer,
N.; Stoddart, J. F. J. Am. Chem. Soc. 1991, 113, 5131.
(4) (a) Philp, D.; Stoddart, J. F. Synlett 1991, 445. (b) Amabilino, D. B.;
Stoddart, J. F. Chem. ReV. 1995, 95, 2725. (c) Philp, D.; Stoddart, J. F.
Angew. Chem., Int. Ed. Engl. 1996, 35, 1155. (d) Vignon, S. A.; Stoddart,
J. F. Collect. Czech. Chem. Commun. 2005, 70, 1493.
(5) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew.
Chem., Int. Ed. 2002, 41, 2596. (b) Tornoe, C. W.; Christensen, C.; Meldal,
M. J. Org. Chem. 2002, 67, 3057.
(6) For examples of the click reaction for the synthesis of linear and diblock
polymers, see: (a) Hawker, C. J.; Wooley, K. L. Science 2005, 309, 1200.
(b) Goodall, G. W.; Hayes, W. Chem. Soc. ReV. 2006, 35, 280. (c) Diaz,
D. D.; Punna, S.; Holzer, P.; McPherson, A. K.; Sharpless, K. B.; Fokin,
V. V.; Finn, M. G. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 4392.
(d) Laurent, B. A.; Grayson, S. M. J. Am. Chem. Soc. 2006, 128, 4238.
(e) Riva, R.; Schmeits, P.; Stoffelbach, F.; Jerome, C.; Jerome, R.;
Lecomte, P. Chem. Commun. 2005, 5334. (f) Opsteen, J. A.; van Hest, J.
C. M. Chem. Commun. 2005, 57. (g) Lutz, J. F.; Borner, H. G.;
Weichenhan, K. Macromol. Rapid Commun. 2005, 26, 514. (h) Ossipov,
D. A.; Hilborn, J. Macromolecules 2006, 39, 1709.
(7) For examples of the click reaction for the synthesis of dendrimers, see:
(a) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.;
Voit, B.; Pyun, J.; Fre´chet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Angew.
Chem., Int. Ed. 2004, 43, 3928. (b) Wu, P.; Malkoch, M.; Hunt, J. N.;
Vestberg, R.; Kaltgrad, E.; Finn, M. G.; Fokin, V. V.; Sharpless, K. B.;
Hawker, C. J. Chem. Commun. 2005, 5775. (c) Malkoch, M.; Schleicher,
K.; Drockenmuller, E.; Hawker, C. J.; Russell, T. P.; Wu, P.; Fokin, V.
V. Macromolecules 2005, 38, 3663. (d) Lee, J. W.; Kim, B. K.; Kim, H.
J.; Han, S. C.; Shin, W. S.; Jin, S. H. Macromolecules 2006, 39, 2418.
(e) Lee, J. W.; Kim, J. H.; Kim, B. K.; Shin, W. S.; Jin, S. H. Tetrahedron
2006, 62, 894. (f) Fernandez-Megia, E.; Correa, J.; Rodriguez-Meizoso,
I.; Riguera, R. Macromolecules 2006, 39, 2113.
Acknowledgment. The collaboration was supported by the
Microelectronics Advanced Research Corporation (MARCO, J.F.S.)
and its Focus Centers on Functional Engineered NanoArchitectonics
(FENA) and Materials Structures and Devices, the Moletronics
Program of the Defense Advanced Research Projects Agency
(DARPA, J.F.S. and J.R.H.), and the Center for Nanoscale
Innovation for Defense (CNID, J.F.S.). J.M.S. gratefully acknowl-
edges the NSF for a Graduate Research Fellowship.
Supporting Information Available: Experimental details, spectral
characterization data of all new compounds (PDF), and complete refs
1a,e and 11. This material is available free of charge via the Internet
References
(1) (a) Choi, J. W.; et al. Chem.sEur. J. 2006, 12, 261. (b) Steuerman, D.
W.; Tseng, H.-R.; Peters, A. J.; Flood, A. H.; Jeppesen, J. O.; Nielsen, K.
A.; Stoddart, J. F.; Heath, J. R. Angew. Chem., Int. Ed. 2004, 43, 6486.
(c) Diehl, M. R.; Steuerman, D. W.; Tseng, H.-R.; Vignon, S. A.; Star,
A.; Celestre, P. C.; Stoddart, J. F.; Heath, J. R. ChemPhysChem 2003, 4,
1335. (d) Yu, H. B.; Luo, Y.; Beverly, K.; Stoddart, J. F.; Tseng, H.-R.;
Heath, J. R. Angew. Chem., Int. Ed. 2003, 42, 5706. (e) Luo, Y.; et al.
ChemPhysChem 2002, 3, 519. (f) Collier, C. P.; Jeppesen, J. O.; Luo, Y.;
Perkins, J.; Wong, E. W.; Heath, J. R.; Stoddart, J. F. J. Am. Chem. Soc.
2001, 123, 12632. (g) Collier, C. P.; Mattersteig, G.; Wong, E. W.; Luo,
Y.; Beverly, K.; Sampaio, J.; Raymo, F. M.; Stoddart, J. F.; Heath, J. R.
Science 2000, 289, 1172.
(2) (a) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew. Chem.,
Int. Ed. 2000, 39, 3348. (b) Balzani, V.; Credi, A.; Venturi, M. Molecular
DeVices and MachinessA Journey into the Nano World; Wiley-VCH:
Weinheim, Germany, 2003. (c) Badjiæ, J. D.; Balzani, V.; Credi, A.; Silvi,
S.; Stoddart, J. F. Science 2004, 303, 1845. (d) Collin, J.-P.; Heitz, V.;
Sauvage, J.-P. Top. Curr. Chem. 2005, 262, 29. (e) Kay, E. R.; Leigh, D.
A. Top. Curr. Chem. 2005, 262, 133. (f) Braunschweig, A. B.; Northrop,
B. H.; Stoddart, J. F. J. Mater. Chem. 2006, 16, 32. (g) Moonen, N. N.
P.; Flood, A. H.; Fernandez, J. M.; Stoddart, J. F. Top. Curr. Chem. 2005,
262, 99. (h) Tseng, H.-R.; Wu, D. M.; Fang, N. X. L.; Zhang, X.; Stoddart,
J. F. ChemPhysChem 2004, 5, 111. (i) Tseng, H.-R.; Vignon, S. A.;
Celestre, P. C.; Perkins, J.; Jeppesen, J. O.; Di Fabio, A.; Ballardini, R.;
Gandolfi, M. T.; Venturi, M.; Balzani, V.; Stoddart, J. F. Chem.sEur. J.
2004, 10, 155. (j) Stoddart, J. F. Acc. Chem. Res. 2001, 34, 410. (k)
Balzani, V.; Go´mez-Lo´pez, M.; Stoddart, J. F. Acc. Chem. Res. 1998, 31,
405. (l) Ballardini, R.; Balzani, V.; Dehaen, W.; Dell’Erba, A. E.; Raymo,
(8) For examples of grafting active functionalities along polymer chains,
see: (a) Helms, B.; Mynar, J. L.; Hawker, C. J.; Fre´chet, J. M. J. J. Am.
Chem. Soc. 2004, 126, 15020. (b) Mynar, J. L.; Choi, T. L.; Yoshida, M.;
Kim, V.; Hawker, C. J.; Fre´chet, J. M. J. Chem. Commun. 2005, 5169.
(c) Malkoch, M.; Thibault, R. J.; Drockenmuller, E.; Messerschmidt, M.;
Voit, B.; Russell, T. P.; Hawker, C. J. J. Am. Chem. Soc. 2005, 127, 14942.
(d) O’Reilly, R. K.; Joralemon, M. J.; Wooley, K. L.; Hawker, C. J. Chem.
Mater. 2005, 17, 5976.
(9) (a) Aucagne, V.; Hanni, K. D.; Leigh, D. A.; Lusby, P. J.; Walker, D. B.
J. Am. Chem. Soc. 2006, 128, 2186. (b) Previously, [2]- and [3]rotaxanes
have been self-assembled from secondary dialkylammonium salts and
crown ethers by using uncatalyzed Huisgen 1,3-dipolar cycloadditions to
attach stoppers to the ends of the threads of [2]- and [3]pseudorotaxanes.
See: Ashton, P. R.; Glink, P. T.; Stoddart, J. F.; Tasker, P. A.; White, A.
J. P.; Williams, D. J. Chem.sEur. J. 1996, 2, 729. Badjic´, J. D.; Balzani,
V.; Credi, A.; Lowe, J. N.; Silvi, S.; Stoddart, J. F. Chem.-Eur. J. 2004,
10, 1926.
(10) CBPQT‚4PF6 is sensitive to bases and nucleophilic conditions typically
used in the synthesis of rotaxane dumbbells.
(11) Liu, Y.; et al. J. Am. Chem. Soc. 2005, 127, 9745.
(12) We anticipate that the production of bistable [3]rotaxanes will proceed
equally smoothly simply by incorporating a second recognition site into
the azide containing a half-dumbbell component.
(13) Simpson, C. D.; Mattersteig, G.; Martin, K.; Gherghel, L.; Bauer, R. E.;
Rader, H. J.; Mu¨llen, K. J. Am. Chem. Soc. 2004, 126, 3139.
JA063127I
9
10390 J. AM. CHEM. SOC. VOL. 128, NO. 32, 2006