M.-C. Yan et al. / Bioorg. Med. Chem. Lett. 16 (2006) 4200–4204
4203
5.06 (dd, 2H, J = 18.6, 12.5), 5.02 (t, 1H, J = 9.6), 4.68
(d, 1H, J = 8.3, H-10), 4.24–4.21 (m, 1H), 4.09 (dd, 1H,
J = 12.0, 2.6), 3.86 (dd, 1H, J = 14.6, 8.3), 3.69–3.66 (m,
1H), 3.07 (dd, 1H, J = 11.3, 4.6), 2.84 (dd, 1H, J = 13.1,
3.4), 2.07 (s, 3H), 2.03 (s, 3H), 2.02 (s, 3H), 1.92 (s, 3H),
1.11 (s, 3H), 0.92 (s, 3H), 0.90 (s, 3H), 0.89 (s, 3H), 0.87
(s, 3H), 0.77 (s, 3H), 0.59 (s, 3H); ESI-MS m/z: 898.6
(M+Na)+. Compound 11: [a]D +13.2 (c 1.30, acetone);
1H NMR (600 MHz, CDCl3) d 7.50–7.30 (m, 10H, Ar-
H), 5.78 (d, 1H, J = 6.5), 5.53 (s, 1H), 5.28 (br s, 1H),
5.07 (dd, 1H, J = 30.2, 12.5), 4.80 (d, 1H, J = 8.2, H-10),
4.29 (dd, 1H, J = 10.4, 4.9), 4.19 (t, 1H, J = 9.4), 3.78 (t,
1H, J = 10.3), 3.74 (br s, 1H), 3.53 (t, 1H, J = 9.3), 3.46–
3.43 (m, 2H), 3.13 (dd, 1H, J = 11.6, 4.3), 2.90 (dd, 1H,
J = 13.6, 3.8), 2.01 (s, 3H), 1.11 (s, 3H), 0.96 (s, 3H), 0.92
(s, 3H), 0.90 (s, 3H), 0.87 (s, 3H), 0.80 (s, 3H), 0.60 (s,
3H); ESI-HRMS m/z 860.5069 (M+Na)+ (C52H71NNaO8
requires 860.5072). Compound 13: [a]D +45.2 (c 0.30,
acetone); 1H NMR (600 MHz, CDCl3) d 8.06–7.20 (m,
30H, Ar-H), 5.88 (d, 1H, J = 3.3), 5.72 (dd, 1H, J = 10.2,
8.1), 5.55 (s, 1H), 5.53–5.51 (m, 2H), 5.28 (br s, 1H), 5.18
(d, 1H, J = 8.1, H-10), 5.06 (dd, 2H, J = 31.2, 12.5), 4.98
(d, 1H, J = 8.1, H-100), 4.76 (t, 1H, J = 9.0), 4.31–4.28 (m,
3H), 3.89 (dd, 1H, J = 7.3, 6.3), 3.78 (t, 1H, J = 10.3),
3.73 (t, 1H, J = 9.1), 3.57 (dd, 1H, J = 9.8, 5.0), 3.05 (dd,
2H, J = 11.2, 4.1), 2.89 (dd, 1H, J = 13.7, 3.6), 1.60 (s,
3H), 1.09 (s, 3H), 0.91 (s, 3H), 0.89 (s, 3H), 0.85 (s, 3H),
0.80 (s, 3H), 0.72 (s, 3H), 0.58 (s, 3H); ESI-HRMS m/z
elucidate the mechanism and develop more desirable
bioactive agents.
In summary, lotoidosides D (1) and E (2) were efficiently
synthesized from oleanolic acid in high yields. This syn-
thesis may provide a convenient way for the preparation
of other N-acetylglucosamine-bearing triterpenoid sapo-
nins. Preliminary biological evaluation was performed
and showed significant antitumor activity. Further bio-
logical studies and SAR research of their derivatives
are in progress and will be reported in due course.
References and notes
1. Hostettmann, K.; Marston, A. Saponins; Cambridge
University Press: Cambridge, 1995, Chapter 5.
2. For some examples reported in 2005, see: (a) Liang, H.;
Tong, W. Y.; Zhao, Y. Y.; Cui, J. R.; Tu, G. Z. Bioorg.
Med. Chem. Lett. 2005, 15, 4493; (b) Zou, K.; Cui, J. R.;
Ran, F. X.; Wang, B.; Zhao, Y. Y.; Zhang, R. Y.; Zheng,
J. H. Chin. J. Org. Chem. 2005, 25, 654; (c) Krief, S.;
Thoison, O.; Sevenet, T.; Wrangham, R. W.; Lavaud, C.
J. Nat. Prod. 2005, 68, 897; (d) Zou, K.; Tong, W. Y.;
Liang, H.; Cui, J. R.; Tu, G. Z.; Zhao, Y. Y.; Zhang, R. Y.
Carbohydr. Res. 2005, 340, 1329.
3. Hamed, A. I.; Piacente, S.; Autore, G.; Marzocco, S.;
Pizza, C.; Oleszek, W. Planta Med. 2005, 71, 554.
4. Yu, B.; Hui, Y. In Glycochemistry: Principles, Synthesis
and Applications; Wang, P. G., Bertozzi, C. R., Eds.;
Marcel Dekker: New York, 2001; pp 167–174.
5. Ohtani, K.; Mizutani, K.; Kasai, R.; Tanaka, O. Tetra-
hedron Lett. 1984, 25, 4537.
6. Cheng, M. S.; Yan, M. C.; Liu, Y.; Zheng, L. G.; Liu, J.
Carbohydr. Res. 2006, 341, 60.
7. Double bond between C-12 and C-13 of oleanolic acid is
inert to catalytic hydrogenation. See: Winterstein, A.;
Stein, G. Z. physiol. Chem. 1931, 202, 222.
8. In our first practice, the previous benzylation condition
(BnBr, Bu4NI, Et3N, and THF) (see Ref. 6) was utilized
but give unstable yield. Therefore another benzylation
condition using BnBr and K2CO3 in aqueous THF was
investigated and proved to give a high yield steadily.
9. Grundler, G.; Schmidt, R. R. Liebigs Ann. Chem. 1984, 11,
1826.
10. Kretzschmar, G.; Stahl, W. Tetrahedron 1998, 54, 6341.
11. Jankowska, M.; Madaj, J. Carbohydr. Res. 2005, 340,
2048.
1438.6655
(M+Na)+
(C86H97NNaO17
requires
1438.6649). Compound 15: [a]D +84.8 (c 1.20, acetone);
1H NMR (600 MHz, CDCl3) d 8.09–7.22 (m, 30H, Ar-
H), 5.96 (d, 1H, J = 3.4), 5.81 (dd, 1H, J = 10.4, 8.1),
5.67 (dd, 1H, J = 10.4, 3.4), 5.29 (br s, 1H), 5.26 (d, 1H,
J = 6.7, NH), 5.06 (dd, 2H, J = 31.8, 12.6), 5.01 (d, 1H,
J = 8.7, H-10), 4.90 (d, 1H, J = 8.0, H-100), 4.63 (d, 1H,
J = 8.0), 4.61 (dd, 2H, J = 31.4, 7.9) 4.60–4.58 (m, 1H),
4.46–4.43 (m, 2H), 3.85 (d, 1H, J = 10.6), 3.64 (dd, 1H,
J = 10.7, 6.0), 3.55–3.52 (m, 2H), 3.07 (dd, 1H, J = 11.8,
4.4), 2.90 (dd, 1H, J = 10.6, 2.3), 2.89–2.86 (m, 1H), 1.34
(s, 3H), 1.09 (s, 3H), 0.92 (s, 3H), 0.90 (s, 3H), 0.85 (s,
3H), 0.79 (s, 3H), 0.71 (s, 3H), 0.58 (s, 3H); HRMS m/z
1418.7001 (M+H)+ (C86H100NO17 requires 1418.6986).
Compound 17: [a]D +31.4 (c 0.35, CHCl3); 1H NMR
(600 MHz, CDCl3) d 8.10–7.24 (m, 30H, Ar-H), 6.11 (d,
1H, J = 9.3), 6.04 (d, 1H, J = 3.2), 5.81 (dd, 1H, J = 10.6,
8.1), 5.70 (dd, 1H, J = 10.6, 3.3), 5.34 (d, 1H, J = 8.0, H-
100), 5.30 (br s, 1H), 5.19 (t, 1H, J = 9.6), 5.11 (dd, 2H,
J = 25.2, 12.6), 5.05 (t, 1H, J = 9.6), 4.93 (t, 1H, J = 9.4),
4.65 (dd, 1H, J = 11.0, 6.0), 4.59 (d, 1H, J = 11.0, H-1000),
4.50 (dd, 2H, J = 20.6, 8.8), 4.47–4.46 (m, 1H), 4.44 (t,
1H, J = 6.4), 4.31 (d, 1H, J = 5.3, H-10), 4.25–4.22 (m,
2H), 4.18 (br s, 1H), 4.11 (m, 1H), 4.04 (br d, 1H,
J = 12.2), 3.76–3.73 (m, 2H), 3.64 (dd, 1H, J = 12.7, 8.9),
3.43 (br d, 1H, J = 10.0), 2.93 (dd, 1H, J = 13.7, 2.8),
2.78 (dd, 1H, J = 11.7, 3.8, H-3), 2.06 (s, 3H), 2.05 (s,
3H), 2.04 (s, 3H), 2.03 (s, 3H), 2.00 (s, 3H), 1.11 (s, 3H),
0.94 (s, 3H), 0.92 (s, 3H), 0.79 (s, 3H), 0.79 (s, 3H), 0.63
(s, 3H), 0.61 (s, 3H); ESI-HRMS m/z 1770.7772
(M+Na)+ (C100H117NNaO26 requires 1770.7756). Com-
pound 1: [a]D +22.1 (c 0.50, MeOH); 1H NMR
(600 MHz, MeOH-d4) d 5.29 (t, 1H, J = 3.3), 4.96–4.94
(m, 1H), 4.67 (d, 1H, J = 7.6, H-1000), 4.57 (d, 1H, J = 7.8,
H-100), 4.51 (d, 1H, J = 7.5, H-10), 4.15 (t, 1H, J = 9.2),
4.00 (t, 1H, J = 11.4), 3.98 (dd, 1H, J = 8.7, 7.4), 3.93–
3.90 (m, 2H), 3.87 (d, 1H, J = 2.8), 3.85–3.83 (dd, 1H,
J = 11.8, 2.6), 3.77–3.75 (dd, 1H, J = 11.4, 4.5), 3.73 (dd,
1H, J = 11.7, 4.3), 3.65 (dd, 1H, J = 9.0, 7.9), 3.59–3.57
(m, 1H), 3.52 (dd, 1H, J = 9.0, 3.3), 3.47–3.45 (m, 1H),
3.42–3.41 (m, 1H), 3.39 (dd, 1H, J = 9.3, 7.6), 3.37–3.35
12. Rio, S.; Beau, J. M.; Jacquinet, J. C. Carbohydr. Res. 1991,
219, 71.
13. ‘Inverse procedure’ here means mixing the sugar acceptor
and promoter (herein TMSOTf) before the sugar donor is
added, which is different to common glycosylation proce-
dure (adding the promoter to the mixture of sugar
acceptor and donor). See: Schmidt, R. R.; Toepfer, A.
Tetrahedron Lett. 1991, 32, 3353.
14. Garegg, P. J. In Preparative Carbohydrate Chemistry;
Hanessian, S., Ed.; Marcel Dekker: New York, 1997; pp
53–67.
15. Debenham, S. D.; Toone, E. J. Tetrahedron: Asymmetry
2000, 11, 385.
16. Schmidt, R. R.; Michel, J. Angew. Chem., Int. Ed. Engl.
1980, 19, 731.
17. Selected data for products and key intermediates: Com-
pound 5: [a]D +24.8 (c 0.62, acetone); 1H NMR
(300 MHz, CDCl3) d 7.35–7.30 (m, 5H, Ar-H), 5.52 (br
t, J = 8.3, NH), 5.31 (br s, 1H), 5.25 (t, 1H, J = 10.2),