derivatives of 3-methyl-5-phenylpyrazoline were reduced in worse yields than pyrazolines which did not contain
a 5-phenyl substituent (Table 3), so it can be proposed that not only a proton α to the nitrile but also a phenyl
group at position 5 of the pyrazoline affects the reaction.
It is significant that the pyrazoline ring and other heterocyclic substituents at the α-position of nitriles 2
were retained under our reaction conditions.
Hydrolysis of 1-α-cyano derivatives of 2-pyrazolines 2a,c with aqueous-ethanolic NaOH in the presence
of hydrogen peroxide gave the corresponding amides 6a,c in ~40% yield. In their 1H NMR spectra the signal of
α-H-1 is shifted to strong field at ~5.5 to ~4.5 ppm in comparison with the pyrazoline starting materials 2 and
TABLE 4. Spectral Characteristics of Compounds 5
IR spectrum,
Com-
pound
1Н NMR spectrum, δ, ppm (J, Hz)
ν, cm-1
5a
5b
1570, 1655,
3310
2.95 (3H, m, Н-4,5); 3.35 (1H, m, H-5); 3.95 (1H, m, CH2);
4.12 (1H, m, CH); 4.27 (1H, m, CH2); 7.32-7.88 (15H, m, HPh)
1565, 1650,
3420
2.95 (3H, m, H-4,5); 3.20 (1H, m, H-5); 3.95 (1H, m, CH2);
4.08 (1H, m, CH); 4,18 (1H, m, CH2); 7.32-7.39 (8H, m, HPh);
7.42 (2H, d, J = 8, HAr); 7.66 (2H, m, HPh); 7.79 (2H, d, J = 8, HAr)
5c
5d
5e
1250, 1620,
1640, 1305
2.91 (3H, m, H-4,5); 3.22 (1H, m, H-5); 3.80 (3H, s, OCH3);
3.95 (1H, m, CH2); 4.06 (1H, m, CH); 4.18 (1H, m, CH2);
6.89 (2H, d, J = 8, HAr); 7.35 (8H, m, HPh); 7.64 (2H, m, HPh);
7.79 (2H, d, J = 8, HAr)
1.42 (3H, t, J = 7, CH3СН2 ); 2.30 (3H, s, CH3); 2.95 (2H, m, H-4);
3.07 (1H, m, H-5); 3.16 (1H, m, H-5); 3.90 (1H, m, CH2);
4.05 (3H, m, CH2, CH); 4.24 (2H, q, J = 7, CH2СН3);
7.25 (1H, s, HPyr); 7.37-7.81 (10H, m, HPh)
1580, 1635,
3350
1570, 1630,
3320
2.98 (2H, m, H-4); 3.22 (2H, m, H-5), 4.09 (1H, m, CH2);
4.24 (1H, m, CH2); 4.47 (1H, m, CH); 6.30 (1H, m, 5-HFur);
6.35 (1H, m, 4-HFur); 7.38-7.50 (8H, m, HPh); 7.65 (1H, m, 3-HFur);
7.81 (2H, m, HPh)
5g
5h
1590, 1650,
3300
1.24 (6H, s, CH3); 2.09 (2H, t, J = 9, H-4); 3.33 (2H, t, J = 9, H-5);
3.75 (2H, d, J = 5.2, CH2); 7.36-7.86 (10H, m, HPh)
1570, 1665,
3430
1.45-1.71 (8H, m, с-С6Н10); 1.85 (2H, m, с-С6Н10); 3.02 (2H, t, J = 9,
H-4); 3.36 (2H, t, J = 9, H-5); 3.71 (2H, d, J = 5, CH2);
7.29-7.45 (6H, m, HPh); 7.63 (2H, m, HPh); 7.75 (2H, m, HPh)
5f
5i
1580, 1630,
3280, 3365
2.86 (2H, m, H-4); 3.04 ( 1H, m, H-5); 3.23 (1H, m, H-5);
4.10 (1H, m, CH2); 4.21 (1H, m, CH2); 4.54 (1H, m, CH);
7.06 (1H, m, 5-Hind); 7.11 (2H, m, 6-Hind, HPh); 7.31 (6H, m, HPh);
7.40 (1H, m, 2-Hind); 7.66 (2H, m, HPh);
7.82 (4H, m, 4-Hind, 7-Hind, HPh); 8.46 (1H, s, NH)
1520, 1650,
3400
2.00 (3Н, s, СН3); 2.89 (1Н, m, Н-4); 3.00 (1Н, m, Н-4);
4.10 (1H, m, CH2); 4.35 (1H, m, CH2); 4.52 (1H, m, CH);
6.30 (1H, m, 5-H Fur); 6.35 (1H, m, 4-HFur); 7.38-7.50 (8H, m, HPh);
7.65 (1H, m, 3-HFur); 7.81 (2H, m, HPh)
5j
1570, 1765,
3420
1.95 (3H, s, CH3); 2.62 (1H, m, H-4); 2.98 (1H, m, H-4);
3.68 (1H, m, CH2); 3.88 (1H, m, CH2); 4.19 (1H, m, H-5);
4.21 (1H, m, СН); 7.19-7.49 (8H, m, HPh); 7.74 (2H, m, HPh)
5k
1580, 1640,
3310
0.89 (3H, s, CH3); 1.12 (3H, s, CH3); 1.97 (3H, s, CH3);
2.57 (1H, m, H-4); 3.15 (1H, m, H-4); 3.44 (1H, m, CH2);
3.74 (1H, m, CH2); 4.48 (1H, m, H-5); 7.30 (3H, m, HPh);
7.38-7.48 (5H, m, HPh); 7.73 (2H, m, HPh)
5l
1530, 1560,
3450
1.10 (1H, m, с-С6Н10); 1.25 (1H, m, с-С6Н10);
1.36-1.60 (8H, m, с-С6Н10); 1.95 (3H, s, CH3); 2.54 (1H, m, H-4);
3.18 (1H, m, H-4); 3.70 (1H, m, CH2); 3.88 (1H, m, CH2);
4.63 (1H, t, J = 11, H-5); 7.19-7.49 (8H, m, HPh); 7.74 (2H, m, HPh)
5m
1540, 1630,
3320
0.78 (3H, s, 5-CH3); 1.17 (3H, s, 5-CH3); 2.00 (3H, s, 3-CH3);
2.45 (2H, dd, J = 14, J = 6, H-4); 3.79 (1H, m, CH2);
3.96 (1H, m, CH2); 4.21 (1H, m, CH); 7.30 (3H, m, HPh);
7.40-7.49 (5H, m, HPh); 7.74 (2H, m, HPh)
1311