10.1002/adsc.201801211
Advanced Synthesis & Catalysis
and metal carbene involved reactions, see: Y. Zhou, Y.
Zhang, J. Wang, Org. Biomol. Chem. 2016, 14, 6638–
Martínez del Campo, Org. Biomol. Chem. 2012, 10,
7603–7609.
6650, and references therein.
[11] -Allenols can be readily prepared by titanium-
mediated selective allenylation of aldehydes, see: T.
Nakagawa, A. Kasatkin, F. Sato, Tetrahedron Lett.
1995, 36, 3207–3210.
[4] For reviews, see: a) J.-M. Weibel, A. Blanc, P. Pale,
Chem. Rev. 2008, 108, 3149–3173; b) N. Krause, C.
Winter, Chem. Rev. 2011, 111, 1994–2009; c) N.
Krause, Ö. Aksin-Artok, M. Asikainen, V. Breker, C.
Deutsch, J. Erdsack, H.-T. Fan, B. Gockel, S. Minkler,
M. Poonoth, Y. Sawama, Y. Sawama, T. Sun, F. Volz,
C. Winter, J. Organomet. Chem. 2012, 704, 1–8; d) S.
Yu, S. Ma, Angew. Chem. Int. Ed. 2012, 51, 3074–
3112; e) N. T. Patil, R. D. Kavthe, V. S. Shinde,
Tetrahedron 2012, 68, 8079–8146; f) E. M. Barreiro, L.
A. Adrio, K. K. Hii, J. B. Brazier, Eur. J. Org. Chem.
2013, 1027–1039; g) M. P. Muñoz, Chem. Soc. Rev.
2014, 43, 3164–3183.
[12] Although it is not clear why only Cu(OTf)2 exhibits
high catalytic activity for the enyne formation, we
assume that the coordination of copper hydroxide to the
allene moiety and the basicity of copper hydroxide may
play a key role for the success of the reaction.
[13] We also examined the reaction of the phenyl-
substituted -allenol, which resulted in low
diastereoselectivity (d.r. = 1.2:1).
[14] In the case of -allenols bearing strong electron-
1
[5] Synthesis of 2-halo-1,3-dienes from -allenols, see: a)
S. Ma, G. Wang, Tetrahedron Lett. 2002, 43, 5723–
5726; b) Y. S. Cho, B. K. Jun, A. N. Pae, J. H. Cha, H.
Y. Koh, M. H. Chang, S.-Y. Han, Synthesis 2004,
2620–2624; c) Y. Deng, X. Jin, S. Ma, J. Org. Chem.
2007, 72, 5901–5904; d) D. Eom, S. H. Kim, P. H. Lee,
Bull. Korean Chem. Soc. 2010, 31, 645–649; e) B.
Alcaide, P. Almendros, A. Luna, N. Prieto, J. Org.
Chem. 2012, 77, 11388–11392; f) Z.-L. Shen, S.-Y.
Wang, Y.-K. Chok, Y.-H. Xu, T.-P. Loh, Chem. Rev.
2013, 113, 271–401; g) M.-H. Lin, Y.-S. Li, C.-K. Kuo,
C.-H. Chen, Y.-C. Huang, K.-Y. Liang, Y.-C. Chen,
C.-H. Tsai, T.-H. Chuang, J. Org. Chem. 2015, 80,
2462–2466.
withdrawing groups, aldehydes are observed by H
NMR analysis. Thus, we assume that copper-catalyzed
retro-allenylation of -allenols competitively occurs,
leading to decreased yields of the enyne products. For
a report on Cu-catalyzed retro-allenylation, see: M. Sai,
H. Yorimitsu, K. Oshima, Angew. Chem. Int. Ed. 2011,
50, 3294–3298.
[15] CCDC 1036920 contains the supplementary
crystallographic data for E-14k. These data can be
obtained free of charge from The Cambridge
Crystallographic
Data
Centre
via
[16] For reviews on cycloaromatization of 1,3-hexadien-5-
ynes to benzene derivatives, see: a) S. Saito, Y.
Yamamoto, Chem. Rev. 2000, 100, 2901–2915; b) G.
Zimmermann, Eur. J. Org. Chem. 2001, 457–471; c) D.
M. Hitt, J. M. O’Connor, Chem. Rev. 2011, 111, 7904–
7922; d) E. Aguilar, R. Sanz, M. A. Fernández-
Rodríguez, P. García-García, Chem. Rev. 2016, 116,
8256–8311; e) C. Raviola, S. Protti, D. Ravelli, M.
Fagnoni, Chem. Soc. Rev. 2016, 45, 4364–4390.
[6] For reviews on Nazarov cyclization, see: a) M. A. Tius,
Eur. J. Org. Chem. 2005, 2193–2206; b) H. Pellissier,
Tetrahedron 2005, 61, 6479–6517; c) A. J. Frontier, C.
Collison, Tetrahedron 2005, 61, 7577–7606; d) T. N.
Grant, C. J. Rieder, F. G. West, Chem. Commun. 2009,
5676–5688; e) T. Vaidya, R. Eisenberg, A. J. Frontier,
ChemCatChem 2011, 3, 1531–1548; f) M. J. Di Grandi,
Org. Biomol. Chem. 2014, 12, 5331–5345; g) D. R.
Wenz, J. R. de Alaniz, Eur. J. Org. Chem. 2015, 23–
37; h) M. G. Vinogradov, O. V. Turova, S. G. Zlotin,
Org. Biomol. Chem. 2017, 15, 8245–8269.
[17] For reviews, see: a) K. C. Nicolaou, W.-M. Dai,
Angew. Chem. Int. Ed. 1991, 30, 1387–1416; b) K. C.
Nicolaou, A. L. Smith, E. W. Yue, Proc. Natl. Acad.
Sci. USA 1993, 90, 5881–5888; c) D. B. Borders, T. W.
Doyle in Enediyne Antibiotics as Antitumor Agents,
Marcel Dekker, New York, 1995; d) J. W. Grissom, G.
U. Gunawardena, D. Klingberg, D, Huang,
Tetrahedron 1996, 52, 6453–6518; e) U. Galm, M. H.
Hager, S. G. Van Lanen, J. Ju, J. S. Thorson, B. Shen,
Chem. Rev. 2005, 105, 739–758; f) M. B. Nielsen, F.
Diederich, Chem. Rev. 2005, 105, 1837–1867; g) M. C.
Joshi, D. S. Rawat, Chem. Biodiversity 2012, 9, 459–
498.
[7] P. Cordier, C. Aubert, M. Malacria, E. Lacôte, V.
Gandon, Angew. Chem. Int. Ed. 2009, 48, 8757–8760.
[8] a) M. Sai, S. Matsubara, Org. Lett. 2011, 13, 4676–
4679; b) M. Sai, S. Matsubara, Synlett 2014, 25, 2067–
2071; c) M. Sai, DOI: 10.1002/adsc.201800731; d) M.
Sai, DOI: 10.1002/adsc.201801135.
[9] a) J.-M. A, P. H. Lee, Bull. Korean Chem. Soc. 2009,
30, 471–474; b) M.-H. Lin, Y.-C. Chen, S.-H. Chiu, K.-
Y. Liang, Y.-L. Lee, T.-H. Chuang, Org. Biomol. Chem.
2017, 15, 605–609.
[18] The E/Z isomers of 18 can be easily separated by
column chromatography: Rf (E-18a, hexane) = 0.37 and
Rf (Z-18a, hexane) = 0.56.
[10] Base-promoted transformation of -allenols to
conjugated enynes via derivatization of the hydroxy
group, see: a) Y. Choe, P. H. Lee, Org. Lett. 2009, 11,
1445–1448; b) Y. Deng, X. Jin, C. Fu, S. Ma, Org. Lett.
2009, 11, 2169–2172; c) B. Alcaide, P. Almendros, T.
[19] X. Ye, P. Wang, M. Cai, J. Chem. Res. 2007, 319–
322.
5
This article is protected by copyright. All rights reserved.