Communication
ChemComm
6 (a) A. Raghavanpillai, V. A. Franco and W. E. Meredith, J. Fluorine
Chem., 2012, 135, 187–194; (b) A. Raghavanpillai and V. A. Franco,
Appl. Sci., 2012, 2, 175–191.
obtained in good yields without using a second nucleophile in
the collection flask.
We demonstrated the mild and rapid synthesis of b-amino
acid-derived scaffold 2 containing isocyanate and mixed carbonic
anhydride moieties. The key to success was a ‘‘rapid dual
activation’’ (r3.3 s) of 1 and alkyl chloroformate in the presence
of NMM and their immediate use for a subsequent coupling
reaction with the avoidance of undesired reactions of the
activated species. This could only be realized by the use of rapid
mixing that was enabled by using a micro-flow reactor. These 22
structurally diverse b-amino acid derivatives are attractive as
drug candidates, and their one-flow synthesis was demon-
strated. Again, we emphasize that the developed reaction can
be safely and reproducibly performed only via the use of micro-
flow technology. The developed methodology should be useful
for developing various dual activation approaches and be valu-
able for accelerating drug, catalyst, and material discovery based
on b-amino acid derivatives.
´
7 (a) R. L. Wolin, A. Santillan, J. T. Barclay, L. Tang, H. Venkatesan,
S. Wilson, D. H. Lee and T. W. Lovenberg, Bioorg. Med. Chem., 2004,
12, 4493–4509; (b) E. Tassoni, R. Conti, G. Gallo, S. Vincenti,
L. Mastrofrancesco, T. Brunetti, W. Cabri and F. Giannessi, Chem-
MedChem, 2011, 6, 1977–1980; (c) M. Durini, E. Russotto,
L. Pignataro, O. Reiser and U. Piarulli, Eur. J. Org. Chem., 2012,
5451–5461; (d) J. Zhang, M. Han, X. Ma, L. Xu, J. Cao, Y. Zhou, J. Li,
T. Liu and Y. Hu, Chem. Biol. Drug Des., 2014, 84, 497–504. Various
synthetic approaches for constructing b-amino acid skeleton have
been reported, see: (e) D. C. Cole, Tetrahedron, 1994, 50, 9517–9582;
( f ) B. Weiner, W. Szymanski, D. B. Janssen, A. J. Minnaard and
B. L. Feringa, Chem. Soc. Rev., 2010, 39, 1656–1691.
8 Y. Iwakura, K. Uno and S. Kang, J. Org. Chem., 1966, 31, 142–146.
9 (a) W. Mormann and E. Hissmann, Tetrahedron Lett., 1987, 28,
3087–3090; (b) W. Mormann, N. Tiemann and E. Turuskan, Polymer,
1989, 30, 1127–1132.
10 Recent selected reviews, see: (a) B. Gutmann, D. Cantillo and C. O.
Kappe, Angew. Chem., Int. Ed., 2015, 54, 6688–6728; (b) M. Baumann
and I. R. Baxendale, Beilstein J. Org. Chem., 2015, 11, 1194–1219;
(c) R. Porta, M. Benaglia and A. Puglisi, Org. Process Res. Dev., 2016,
20, 2–25; (d) I. Rossetti and M. Compagnoni, Chem. Eng. J., 2016,
296, 56–70; (e) S. Kobayashi, Chem. – Asian J., 2016, 11, 425–436;
( f ) C. A. Shukla and A. A. Kulkarni, Beilstein J. Org. Chem., 2017, 13,
960–987; (g) F. Fanelli, G. Parisi, L. Degennaro and R. Luisi, Beilstein
J. Org. Chem., 2017, 13, 520–542; (h) J. Britton and C. L. Raston,
Chem. Soc. Rev., 2017, 46, 1250–1271; (i) M. B. Plutschack, B. Pieber,
K. Gilmore and P. H. Seeberger, Chem. Rev., 2017, 117, 11796–11893;
This work was partially supported by the Scientific Research
on Innovative Areas 2707 Middle molecular strategy (no.
16H01138) from the Japan Society for the Promotion of Science,
and by the Naito Foundation Natural Science Scholarship.
´
( j) R. Gerardy, N. Emmanuel, T. Toupy, V.-E. Kassin, N. N. Tshibalonza,
M. Schmitz and J.-C. M. Monbaliu, Eur. J. Org. Chem., 2018, 2301–2351;
(k) B. T. Ramanjaneyulu, N. K. Vishwakarma, S. Vidyacharan,
P. R. Adiyala and D.-P. Kim, Bull. Korean Chem. Soc., 2018, 39, 757–772.
11 H. Kim, K.-i. Min, K. Inoue, D. J. Im, D.-P. Kim and J.-i. Yoshida,
Science, 2016, 352, 691–694.
Conflicts of interest
There are no conflicts to declare.
12 We reported micro-flow synthesis of b-NCAs, see: (a) Y. Otake,
H. Nakamura and S. Fuse, Angew. Chem., Int. Ed., 2018, 57,
11389–11393; micro-flow synthesis of b-NCAs, see:; (b) N. Sugisawa,
Y. Otake, H. Nakamura and S. Fuse, Chem. – Asian J., 2020, 15, 79–84.
Notes and references
1 Definition of bifunctional catalysis and synergistic catalysis, see:
(a) A. E. Allen and D. W. C. MacMillan, Chem. Sci., 2012, 3, 633–658;
Recent selected reviews, see: (b) Z. Du and Z. Shao, Chem. Soc. Rev., 2013, 13 H. K. Hall, J. Phys. Chem., 1956, 60, 63–70.
´
42, 1337–1378; (c) S. Afewerki and A. Cordova, Chem. Rev., 2016, 116, 14 C. Faltin, E. M. Fleming and S. J. Connon, J. Org. Chem., 2004, 69,
13512–13570; (d) B. Teng, W. C. Lim and C.-H. Tan, Synlett, 2017, 6496–6499.
1272–1277; (e) J. Fu, X. Huo, B. Li and W. Zhang, Org. Biomol. Chem., 15 H. K. Hall, J. Am. Chem. Soc., 1957, 79, 5441–5444.
2017, 15, 9747–9759; ( f ) K. T. Mahmudov, A. V. Gurbanov, F. I. Guseinov 16 M. L. Bender and B. W. Turnquest, J. Am. Chem. Soc., 1957, 79, 1656–1662.
and M. F. C. Guedes da Silva, Coord. Chem. Rev., 2019, 387, 32–46.
2 (a) B. M. Trost, X. Luan and Y. Miller, J. Am. Chem. Soc., 2011, 133,
17 G. W. Anderson, J. E. Zimmerman and F. M. Callahan, J. Am. Chem.
Soc., 1967, 89, 5012–5017.
´
12824–12833; (b) F. Nahra, Y. Mace, D. Lambin and O. Riant, Angew. 18 Polymerization rate of b-NCA in the presence of organic base was
Chem., Int. Ed., 2013, 52, 3208–3212.
3 Jensen and coworkers reported required time (seconds to minutes)
reported, see: H. R. Kricheldorf and R. Mu¨lhaupt, J. Macromol. Sci.,
Part A: Pure Appl. Chem., 1980, 14, 349–377.
for complete mixing of solutions using batch reactors, see: 19 A. R. Choppin and J. W. Rogers, J. Am. Chem. Soc., 1948, 70, 2967.
R. L. Hartman, J. P. McMullen and K. F. Jensen, Angew. Chem., Int. 20 Both CbzCl and acylammonium cation are unstable, therefore, we
Ed., 2011, 50, 7502–7519.
intended to convert them to a stable amide using benzyl amine.
4 Recent selected reviews, see: (a) R. P. Cheng, S. H. Gellman and 21 We examined substrate scope with the reaction time of 3.3 s.
W. F. DeGrado, Chem. Rev., 2001, 101, 3219–3232; (b) D. Seebach,
A. K. Beck and D. J. Bierbaum, Chem. Biodiversity, 2004, 1, 1111–1239;
Because yield was not changed by reducing the reaction time from
10 s to 3.3 s in our preliminary examination. Details, see ESI†.
¨
´
(c) F. Fu¨lop, T. A. Martinek and G. K. Toth, Chem. Soc. Rev., 2006, 35, 22 Inexpensive, readily available, and stable isobutyl chloroformate
323–334; (d) F. Kudo, A. Miyanaga and T. Eguchi, Nat. Prod. Rep., 2014,
31, 1056–1073. Recent selected publications, see: (e) M.-R. Lee, N. Raman,
S. H. Gellman, D. M. Lynn and S. P. Palecek, ACS Chem. Biol., 2017, 12,
was used instead of CbzCl for investigation of substrate scope. We
experimentally confirmed instability of acylammonium cation gen-
erated from isobutyl chloroformate. Details, see ESI†.
´
´
2975–2980; ( f ) E. Bartus, Z. Hegredu¨s, E. Weber, B. Csipak, G. Szakonyi 23 E. Dyer, J. F. Glenn and E. Lendrat, J. Org. Chem., 1961, 26, 2919–2925.
and T. A. Martinek, ChemistryOpen, 2017, 6, 236–241; (g) J. W. Checco 24 Synthesis of 4a under batch conditions afforded decreased yield.
and S. H. Gellman, ChemBioChem, 2017, 18, 291–299.
Details, see ESI†.
5 Recent selected publications, see: (a) P. E. Coffey, K.-H. Drauz, 25 (a) J. Guillon, M. Daoust, D. Radulovic, M. Boulouard, P. Dallemagne,
S. M. Roberts, J. Skidmore and J. A. Smith, Chem. Commun., 2001,
2330–2331; (b) P. S.-P. Wang, J. B. Nguyen and A. Schepartz, J. Am.
Chem. Soc., 2014, 136, 6810–6813.
E. Legrand, S. Rault, M. Quermonne and M. Robba, Eur. J. Med. Chem.,
1996, 31, 335–339; (b) L. G. Nair, S. Bogen, R. J. Doll, N.-Y. Shih and
F. G. Njoroge, Tetrahedron Lett., 2010, 51, 1276–1279.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020