Functionalization of N-[(silyl)methyl]-â-lactam
desilylation, and can be trapped “in situ” with carbonyl
compounds to afford Peterson-like olefination products.7 Re-
cently, we also have described the completely stereocontrolled
R-alkylation of â-lactams 5 to R-alkyl-R-amino-N-[(trimethyl-
silyl)methyl-â-lactams 7,8 demonstrating their utility as precur-
sors of â-turned peptidomimetic â-lactam surrogates.9
On the basis of the existing methods to metalate amides or
carbamates adjacent to the nitrogen atom,10 and considering the
well-known ability of silyl groups to facilitate weak R-carbanion
stabilization in N-[(trimethylsilyl)methyl]-R-amino derivatives,11
we envisaged to study the base-promoted R′-metalation of
â-lactams 7. Herein we report the first access to enantiopure
â-lactams 8 lithiated R′ to the â-lactam nitrogen and their
reaction with carbon electrophiles to afford a variety of
R′-functionalized N-methyl azetidin-2-ones.
Results and Discussion
FIGURE 1. R′-Metalated â-lactams stabilized by enolate formation
and benzylic effect.
To establish the conditions and scope of metalation (7 f 8),
a set of structurally different N-silylmethyl-â-lactams 10-17
was prepared according to procedures previously described in
our laboratory (Scheme 1). Suitable â-lactams with the R-amino
function protected as cyclic carbamate (Xc) or alkyl carbamate
(BocHN-) were selected, bearing either R-alkyl- or R,â-dialkyl
substitution patterns at the azetidin-2-one ring and having one
or two trimethylsilyl groups at the N-methyl position.
Some of the N-[(silyl)methyl]-â-lactams prepared were first
submitted to a test R′-deprotonation reaction with alkyllithium
bases, followed by in situ trapping of the intermediate carbanions
using deuteriomethanol or highly reactive carbon electrophiles
(e.g., MeI, BnBr) (Table 1).
It was found that R-monoalkyl-bis-silyl-â-lactam 10 was
s
cleanly deprotonated with BuLi at -78 °C in THF (entry 1).
n
Attempted deprotonation with BuLi under similar conditions
caused product decomposition, whereas tBuLi resulted in
residual deuteration (<5% by NMR) and recovery of the starting
material. Deprotonation of â-lactam 10 could also be driven
with LDA or LHMDS bases, but they only led to partial
FIGURE 2. Desilylation and sequential deprotonation of R-amino-
R,â-disubstituted-N-[(trimethylsilyl)methyl]-â-lactams.
(7) Palomo, C.; Aizpurua, J. M.; Garc´ıa, Tetrahedron Lett. 1990, 31,
1239-1241.
(8) (a) Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Benito, A.; Cuerdo, L.;
Fratila, R. M.; Jimenez, A.; Loinaz, I.; Miranda, J. I.; Pytlewska, K. R.;
Micle, A.; Linden, A. Org. Lett., 2004, 6, 4443-4446. (b) Palomo, C.;
Aizpurua, J. M.; Galarza, R.; Benito, A.; Khamrai, U. K.; Eikeseth, U.;
Linden, A. Tetrahedron, 2000, 56, 5563-5570. For the preparation of related
racemic R-alkyl-R-amino-â-lactams, see: (c) Wu, Z.; Georg, G. I.; Cathers,
B. E.; Schloss, J. V. Bioorg. Med. Chem. Lett., 1996, 6, 983-986. (d)
Broadrup, R. L.; Wang, B.; Malachowski, W. P. Tetrahedron, 2005, 61,
10277-10284.
(9) (a) Palomo, C.; Aizpurua, J. M.; Benito, A.; Miranda, J. I.; Fratila,
R. M.; Matute, C.; Domercq, M.; Gago, F.; Martin-Santamaria, S.; Linden,
A. J. Am. Chem. Soc. 2003, 125, 16243-16260. (b) Palomo, C.; Aizpurua,
J. M.; Benito, A.; Galarza, R.; Khamrai, U. K.; Vazquez, J.; de Pascual-
Teresa, B.; Nieto, P. M.; Linden, A. Angew. Chem., Int. Ed. 1999, 38, 3056-
3058.
anions, or the participation of N-acyl imine â-carbanions.5 As
a result of their instability, examples of the intramolecular
reaction of benzyl anions 2 with electrophiles are very rare:
only single examples of R′-deuteration4 and R′-acylation5(b) have
been described.
As part of our ongoing interest for 3-amino-N-[(trimethyl-
silyl)methyl]-2-azetidinones 5,6 we have established previously
their usefulness as a source of naked N-[(trimethylsilyl)methyl]-
â-lactam carbanions 6 (Figure 2). These species are generated
under formally neutral conditions, through fluoride ion-promoted
(5) (a) Ahn, C.; Shin, D.-S.; Park, J.-H. J. Korean Chem. Soc. 1999, 43,
489-490. (b) Escalante, J.; Gonzalez-Tototzin, M. A. Tetrahedron:
Asymmetry 2003, 14, 981-985. (c) Park, J.-H.; Ha, J.-R.; Oh, S.-J.; Kim,
J.-A.; Shim, D.-S.; Won, T.-J.; Lan, Y.-F.; Ahn, C. Tetrahedron Lett. 2005,
46, 1755-1757.
(6) In contrast to other N-aryl- or N-alkyl-substituted conventional
azetidinones, â-aryl-, â-alkyl-, â-unsubstituted â-lactams 5 are accessible
in a fully stereocontrolled manner from N-[bis(trimethylsilyl)methyl]imines.
See the following for example: (a) Palomo, C.; Aizpurua, J. M.; Legido,
M.; Mielgo, A.; Galarza, R. Chem. Eur. J. 1997, 3, 1432-1441. (b) Palomo,
C.; Aizpurua, J. M.; Legido, M.; Galarza, R.; Deya, P. M.; Dunogues, J.;
Picard, J. P.; Ricci, A.; Seconi, G. Angew. Chem., Int. Ed. Engl. 1996, 35,
1239-1241.
(10) (a) Whisler, M. C.; Macneil, S.; Snieckus, V.; Beak, P. Angew.
Chem., Int. Ed. 2004, 43, 2206-2225. (b) Beak, P.; Basu, A.; Gallagher,
D. J.; Park, Y. S.; Thayumanyan, S. Acc. Chem. Res. 1996, 24, 552-560.
(11) For reviews on silyl carbanions, see (a) Wang, D.; Chan, T. H.
Silylmethyl Anions. In Science of Synthesis: Houben-Weyl, Methods of
Molecular Transformations, Fleming, I., Ed.; Thieme: Stuttgart-New York,
2002; Vol. 4, p 481-498. (b) J. S. Panek, Silicon Stabilization. In
ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: New York, 1991; Vol. 1, p. 579. (c) Itami, K.; Kamei, T.;
Mitsudo, K.; Nokami, T.; Yoshida J. J. Org. Chem. 2001, 66, 3970-3976
and references therein. For metalation of N-(silylmethyl)amides and
carbamates, see (d) Sieburth, S. M. N.; Somers, J. J.; O’Hare, H. K.,
Tetrahedron 1996, 52, 5669-5682.
J. Org. Chem, Vol. 71, No. 17, 2006 6369