As part of our interest in oxidation catalysis we have
recently developed an efficient ruthenium tetroxide5 catalyzed
oxidative cyclization of 1,5-dienes.6,7 We here present the
first application of this method to natural product synthesis.
As a target compound, cis-solamin, a representative mono-
THF acetogenin isolated in 1998,8 was chosen (Figure 1).
To date two total syntheses9 and one formal synthesis10 have
been reported.11
Scheme 1. Retrosynthetic Analysis
Our retrosynthetic analysis is outlined in Scheme 1. It takes
advantage of the inherent symmetry of the central THF diol
unit of cis-solamin by disconnection between C12-C13 and
C22-C23. The strategy is centered on the single-step
construction of the core THF unit by oxidative cyclization
of an appropriate diene precursor (6). Crucial to the success
of this approach is both the efficiency of the oxidative
cyclization and the feasibility of a subsequent desymmetri-
zation of the Cs-symmetric cyclization product.
(4) Representative acetogenin total syntheses: (a) Marshall, J. A.; Jiang,
H. J. Org. Chem. 1999, 64, 971-975. (b) Ba¨urle, S.; Hoppen, S.; Koert,
U. Angew. Chem. 1999, 111, 1341-1344; Angew. Chem., Int. Ed. 1999,
38, 1263-1266. (c) Sinha, A.; Sinha, S. C.; Sinha, S. C.; Keinan, E. J.
Org. Chem. 1999, 64, 2381-2386. (d) Hoppen, S.; Ba¨urle, S.; Koert, U.
Chem. Eur. J. 2000, 6, 2382-2396. (e) Dixon, D. J.; Ley, S. V.; Reynolds,
D. J. Angew. Chem. 2000, 112, 3768-3772; Angew. Chem., Int. Ed. 2000,
39, 3622-3626. (f) Harcken, C.; Bru¨ckner, R. New J. Chem. 2001, 25,
40-54. (g) Hu, T.-S.; Yu, Q.; Wu, Y.-L.; Wu, Y. J. Org. Chem. 2001, 66,
853-861. (h) Burke, S. D.; Jiang, L. Org. Lett. 2001, 3, 1953-1955. (i)
Takahashi, S.; Kubota, A.; Nakata, T. Angew. Chem. 2002, 114, 4945-
4948; Angew. Chem., Int. Ed. 2002, 41, 4751-4754. (j) Zhu, L.; Mootoo,
D. R. Org. Lett. 2003, 5, 3475-3478. (k) Zhang, Q.; Lu, H.; Richard, C.;
Curran, D. P. J. Am. Chem. Soc. 2004, 126, 36-37. (l) Crimmins, M. T.;
She, J. J. Am. Chem. Soc. 2004, 126, 12790-12791. (m) Nattrass, G. L.;
Diez, E.; McLachlan, M. M.; Dixon, D. J.; Ley, S. V. Angew. Chem. 2005,
117, 586-590; Angew. Chem., Int. Ed. 2005, 44, 580-584. (n) Hanessian,
S.; Giroux, S.; Buffat, M. Org. Lett. 2005, 7, 3989-3992. (o) Tinsley, J.
M.; Mertz, E.; Chong, P. Y.; Rarig, R.-A. F.; Roush, W. R. Org. Lett. 2005,
7, 4245-4248. See also refs 9-11.
The synthesis of the cyclization precursor is summarized
in Scheme 2. Commercially available (E,E,E)-1,5,9-cy-
Scheme 2. Synthesis of the Cyclization Precursor
(5) For a recent review on ruthenium tetroxide catalyzed oxidations,
see: Plietker, B. Synthesis 2005, 2453-2472.
(6) Roth, S.; Go¨hler, S.; Cheng, H.; Stark, C. B. W. Eur. J. Org. Chem.
2005, 4109-4118.
(7) Representative references for the oxidative cyclization of 1,5-dienes.
With ruthenium tetroxide: (a) Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.;
Sharpless, K. B. J. Org. Chem. 1981, 46, 3936-3938. (b) Albarella, L.;
Musumeci, D.; Sica, D. Eur. J. Org. Chem. 2001, 997-1003. (c) Piccialli,
V.; Cavallo, N. Tetrahedron Lett. 2001, 42, 4695-4699. See also ref 6.
With potassium permanganate: (d) Klein, E.; Rojahn, W. Tetrahedron 1965,
21, 2353-2358. (e) Walba, D. M.; Wand, M. D.; Wilkes, M. C. J. Am.
Chem. Soc. 1979, 101, 4396-4397. (f) Baldwin, J. E.; Crossley, M. J.;
Lehtonen, E.-M. M. J. Chem. Soc., Chem. Commun. 1979, 918-920 (g)
Kocienski, P. J.; Brown, R. C. D.; Pommier, A.; Procter, M.; Schmidt, B.
J. Chem. Soc., Perkin Trans. 1 1998, 9-39. (h) Brown, R. C. D.; Keily, J.
F. Angew. Chem. 2001, 113, 4628-4630; Angew. Chem., Int. Ed. 2001,
40, 4496-4498. See also ref 9b and 9c. With osmium tetroxide: (i) de
Champdore´, M.; Lasalvia, M.; Piccialli, V. Tetrahedron Lett. 1998, 39,
9781-9784. (j) Donohoe, T. J.; Butterworth: S. Angew. Chem. 2003, 115,
978-981; Angew. Chem., Int. Ed. 2003, 42, 948-951.
clododecatriene 7 was readily converted into diene 8 via
monodihydroxylation, glycol cleavage, and subsequent boro-
hydride reduction.12 Standard silyl protection of diol 8
afforded the cyclization precursor 6 in excellent overall yield
(65% over 4 steps). It is worth noting that these four steps
can be carried out on a multigram scale without purification
of intermediates.
We next turned our attention to the ruthenium tetroxide
catalyzed oxidative cyclization.6 Treatment of diene 6 with
0.2 mol % ruthenium(III) chloride (as a precatalyst for the
ruthenium tetroxide generated in situ) in the presence of
sodium periodate on wet silica6,13 (in THF14 at 0 °C) resulted
(8) Gleye, C.; Duret, P.; Laurens, A.; Hocquemiller, R.; Cave´, A. J. Nat.
Prod. 1998, 61, 576-579.
(9) (a) Makabe, H.; Hattori, Y.; Tanaka, A.; Oritani, T. Org. Lett. 2002,
4, 1083-1085. (b) Cecil, A. R. L.; Brown, R. C. D. Org. Lett. 2002, 4,
3715-3718. (c) Cecil, A. R. L.; Hu, Y. L.; Vicent, M. J.; Duncan, R.;
Brown, R. C. D. J. Org. Chem. 2004, 69, 3368-3374.
(10) Donohoe, T. J.; Butterworth: S. Angew. Chem. 2005, 117, 4844-
4867; Angew. Chem., Int. Ed. 2005, 44, 4766-4768.
(11) For syntheses of the natural isomer trans-solamin, see: (a) Sinha,
S. C.; Keinan, E. J. Am. Chem. Soc. 1993, 115, 4891-4892. (b) Trost, B.
M.; Shi, Z. P. J. Am. Chem. Soc. 1994, 116, 7459-7460. (c) Makabe, H.;
Tanaka, A.; Oritani, T. J. Chem. Soc., Perkin Trans. 1 1994, 1975-1981.
(d) Kuriyama, W.; Ishigami, K.; Kitahara, T. Heterocycles 1999, 50, 981-
988. (e) Prestat, G.; Baylon, C.; Heck, M.-P.; Grasa, G. A.; Nolan, S. P.;
Mioskowski, C. J. Org. Chem. 2004, 69, 5770-5773. For a semi-synthesis
of cis- and trans-solamin from Diepomuricanin A, see: Gleye, C.; Franck,
X.; Hocquemiller, R.; Laurens, A.; Laprevote, O.; de Barros, S.; Figade`re,
B. Eur. J. Org. Chem. 2001, 3161-3164.
(12) The first two steps of this sequence have previously been described,
cf.: Neogi, P.; Doundoulakis, T.; Yazbak, A.; Sinha, S. C.; Sinha, S. C.;
Keinan, E. J. Am. Chem. Soc. 1998, 120, 11279-11284.
3434
Org. Lett., Vol. 8, No. 16, 2006