AB and CD spiroketals and on the EF tetrahydropyran
moieties.10
Here, we would like to report the synthesis of the AB
spiroketal A, which was planned from ketone B (Scheme
1). It was envisaged that the stereogenic center at C11 will
allylmetal respectively on a â-hydroxy aldehyde and a
â-hydroxy ketone. Furthermore, the use of an enantio-
selective allyltitanation was envisaged to establish the C5
stereogenic center.
The synthesis of the AB ring of spongistatin began with
the opening of the known epoxide 111 with isopropenyl-
magnesium bromide in the presence of CuI (THF, -40 °C)
to afford the homoallylic alcohol 2 in 94% yield (Scheme
2). To control the stereogenic center at C9, compound 2 was
Scheme 1
Scheme 2
be issued from the ring opening of the optically active
epoxide 1 and the C3 and C9 stereogenic centers will be
controlled by using a diastereoselective addition of an
(8) (a) Ball, M.; Gaunt, M. J.; Hook, D. F.; Jessiman, A. S.; Kawahara,
S.; Orsini, P.; Scolaro, A.; Talbot, A. C.; Tanner, H. R.; Yamanoi, S.; Ley,
S. V. Angew. Chem., Int. Ed. 2005, 44, 5433. (b) Paterson, I.; Coster, M.;
Chen, D. Y.-K.; Oballa, R. M.; Wallace, D.; Norcross, R. D. Org. Biomol.
Chem. 2005, 3, 2399. (c) Paterson, I.; Coster, M. J.; Chen, D. Y.-K.; Gibson,
K. R.; Wallace, D. J. Org. Biomol. Chem. 2005, 3, 2410. (d) Paterson, I.;
Coster, M. J.; Chen, D. Y.-K.; Acen˜a, J. L.; Bach, J.; Keown, L. E.;
Trieselman, T. Org. Biomol. Chem. 2005, 3, 2420. (e) Paterson, I.; Chen,
D. Y.-K.; Coster, M. J.; Acen˜a J. L.; Bach, J.; Wallace, D. J. Org. Biomol.
Chem. 2005, 3, 2431. (f) Heathcock, C. H.; McLaucghlin, M.; Medina, J.;
Hubbs, J. L.; Wallace, G. A.; Scott, R.; Claffey, M. M.; Hayes, C. J.; Ott,
G. R. J. Am. Chem. Soc. 2003, 125, 12844. (g) Crimmins, M. T.; Katz, J.
D.; Washburn, D. G.; Allwein, S. P.; McAtee, L. F. J. Am. Chem. Soc.
2002, 124, 5661-5663. (h) Smith, A. B., III; Lai, Q.; Doughty, V. A.;
Zhuang, L.; McBriar, M. D.; Kerns, J. K.; Brook, C. S.; Murase, N.;
Nakayama, K. Angew. Chem., Int. Ed. 2001, 40, 196. (i) Evans, D. A.;
Trotter, B. W.; Coleman, P. J.; Coˆte´, B.; Dias, L. C.; Rajapakse, H.; Tyler,
A. N. Tetrahedron 1999, 55, 8671. (j) Guo, J.; Duffy, K. J.; Stevens, K.
L.; Dalko, P. I.; Roth, R. M.; Hayward, M. M.; Kishi, Y. Angew. Chem.,
Int. Ed. 1998, 37, 187. (k) Hayward, M. M.; Roth, R. M.; Duffy, K. J.;
Dalko, P. I.; Stevens, K. L.; Guo, J.; Kishi, Y. Angew. Chem., Int. Ed.
1998, 37, 192.
converted to the corresponding ketone 3 in 94% yield by
oxidative cleavage (OsO4, NaIO4, 2,6-lutidine, dioxane/
H2O).12 At this stage, the stereospecific introduction of the
C9 stereocenter was attempted by using an allylstannane
synthesized from trimethylallylsilane. When ketone 3 and
trimethylallylsilane were combined by using a number of
different Lewis acids, addition protocols, and precomplex-
ation protocols, only one set of conditions, i.e., a premixed
solution of trimethylallylsilane and SnCl4 in CH2Cl2 at
-78 °C, was found to produce the desired alcohol 4 in
good yield (77%) and with excellent diastereoselectivity
(dr > 99:1) in favor of the syn isomer. The stereochemical
(9) Reviews: (a) Yeung, K.-S.; Paterson, I. Chem. ReV. 2005, 105, 4237.
(b) Paterson, I.; Coster, M. J. Strategies and Tactics in Organic Synthesis;
Elsevier: London, UK, 2004; Vol. 4, p 211.
(10) (a) Crimmins, M. T.; Smith, A. C. Org. Lett. 2006, 8, 1003. (b)
Paterson, I.; Gottschling, D.; Menche, D. Chem. Commun. 2005, 28, 3568.
(c) Lau, C. K.; Crumpler, S.; MacFarlane, K.; Lee, F.; Berthelette, C. Synlett
2004, 13, 2281. (d) Hubbs, J. L.; Heathcock, C. H. J. Am. Chem. Soc. 2003,
125, 12836. (e) Terauchi, T.; Terauchi, T.; Sato, I.; Shoji, W.; Tsukada, T.;
Tsunoda, T.; Kanoh, N.; Nakata, M. Tetrahedron Lett. 2003, 44, 7741. (f)
Gaunt, M. J.; Sneddon, H. F.; Hewitt, P. R.; Orsini, P.; Hook, D. F.; Ley,
S. V. Org. Biomol. Chem. 2003, 1, 15. (g) Smith, A. B. III; Corbett, R. M.;
Pettit, G. R.; Chapuis, J.-C.; Schmidt, J. M.; Hamel, E.; Jung, M. K. Bioorg.
Med. Chem. Lett. 2002, 12, 2039. (h) Crimmins, M. T.; Katz, J. D.; McAtee,
L. C.; Tabet, E. A.; Kirincich, S. J. Org. Lett. 2001, 3, 949. (i) Barrett, A.
G. M.; Braddock, D. C.; Pieter, D.; Andrew, J. P.; Williams, D. J. J. Org.
Chem. 2000, 65, 375. (j) Pietruszka, J. Angew. Chem., Int. Ed. 1998, 37,
2629. (k) Paterson, I.; Wallace, D. J.; Oballa, R. M. Tetrahedron Lett. 1998,
39, 8545. (l) Crimmins, M. T.; Washburn, D. G. Tetrahedron Lett. 1998,
39, 7487. (m) Terauchi, T.; Nakata, M. Tetrahedron Lett. 1998, 39, 3795.
(n) Evans, D. A.; Coleman, P. J.; Dias, L. C. Angew. Chem., Int. Ed. Engl.
1997, 36, 2737. (o) Evans, D. A.; Trotter, B. W.; Coleman, P. J.; Coˆte´, B.
Angew. Chem., Int. Ed. 1997, 36, 2741. (p) Smith, A. B. III; Lin, Q.;
Nakayama, K.; Boldi, A. M.; Brook, C. S.; McBriar, M. D.; Moser, W. H.;
Sobukawa, M.; Zhuang, L. Tetrahedron Lett. 1997, 38, 8675. (q) Paterson,
I.; Oballa, R. M. Tetrahedron Lett. 1997, 38, 8241. (r) Paterson, I.; Oballa,
R. M.; Norcross, R. D. Tetrahedron Lett. 1996, 37, 8581.
assignment was achieved by examination of the 1H and 13
C
NMR spectra13 of ketal 5, obtained from 4 by treatment with
2,2-dimethoxypropane, in the presence of PPTS (0.1 equiv)
in CH2Cl2 at room temperature. Elaboration of the C5-C13
fragment was achieved in a two-step sequence. After
oxidative cleavage of the olefin 5 (OsO4, NaIO4, 2,6-lutidine,
dioxane/H2O), the resulting aldehyde was treated with allyl-
magnesium bromide (Et2O, -78 °C) to provide the desired
alcohol 6 as a 1/1 inseparable mixture of diastereomers
(11) Liu, Y.-J.; Tropp, B. E.; Engel, R. Can. J. Chem. 1993, 71, 206.
(12) Wensheng, Y.; Yan, M.; Ying, K.; Zhengmao, H.; Zhendong, J.
Org. Lett. 2004, 6, 3217.
(13) Rychnovsky, S. D.; Rogers, B. N.; Richardson, T. I. Acc. Chem.
Res. 1998, 31, 9.
3656
Org. Lett., Vol. 8, No. 17, 2006