Notes and references
{ See ESI for crystallographic data. CCDC 604537. For crystallographic
data in CIF or other electronic format see DOI: 10.1039/b606373j
1 P. Terech and R. G. Weiss, Chem. Rev., 1997, 97, 3133.
2 L. A. Estroff and A. D. Hamilton, Chem. Rev., 2004, 104, 1201.
3 Z. Yang, K. Xu, L. Wang, H. Gu, H. Wei, M. Zhang and B. Xu, Chem.
Commun., 2005, 4414.
4 D. K. Smith, Chem. Commun., 2006, 34.
5 Q. Wei and S. L. James, Chem. Commun., 2005, 1555.
6 D. R. Trivedi, A. Ballabh and P. Dastidar, J. Mater. Chem., 2005, 15,
2606.
7 D. K. Kumar, D. A. Jose, A. Das and P. Dastidar, Chem. Commun.,
2005, 4059.
8 Y. Jeong, K. Hanabusa, H. Masunaga, I. Akiba, K. Miyoshi, S. Sakurai
and K. Sakurai, Langmuir, 2005, 21, 586.
9 K. J. C. van Bommel, C. van der Pol, I. Muizebelt, A. Friggeri,
A. Heeres, A. Meetsma, B. L. Feringa and J. van Esch, Angew. Chem.,
Int. Ed., 2004, 43, 1663.
10 M. Shirakawa, N. Fujita, T. Tani, K. Kanekob and S. Shinkai, Chem.
Commun., 2005, 4149.
11 L. Applegarth, N. Clark, A. C. Richardson, A. D. M. Parker,
I. Radosavljevic-Evans, A. E. Goeta, J. A. K. Howard and J. W. Steed,
Chem. Commun., 2005, 5423.
12 B. G. Xing, M. F. Choi and B. Xu, Chem. Commun., 2002, 362.
13 H. Engelkamp, S. Middelbeek and R. J. M. Nolte, Science, 1999, 284,
785.
14 A. Ajayaghosh, R. Varghese, S. J. George and C. Vijayakumar, Angew.
Chem., Int. Ed., 2006, 45, 1141.
15 A. Ajayaghosh, C. Vijayakumar, R. Varghese and S. J. George, Angew.
Chem., Int. Ed., 2006, 45, 456.
Fig. 2 (a) Molecular structure of 1 determined by X-ray crystallography
(50% ellipsoids), (b) crystal packing in 1 to give chiral stacks linked by a
single urea hydrogen bond.
16 S. J. George, A. Ajayaghosh, P. Jonkheijm, A. P. H. J. Schenning and
E. W. Meijer, Angew. Chem., Int. Ed., 2004, 43, 3422.
17 J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch and
B. L. Feringa, Science, 2004, 304, 278.
18 K. Hanabusa, M. Yamada, M. Kimura and H. Shirai, Angew. Chem.,
Int. Ed. Engl., 1996, 35, 1949.
19 K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata,
T. Komori, F. Ohseto, K. Ueda and S. Shinkai, J. Am. Chem. Soc.,
1994, 116, 6664.
20 J. Brinksma, B. L. Feringa, R. M. Kellogg, R. Vreeker and J. van Esch,
Langmuir, 2000, 16, 9249.
21 J. van Esch, F. Schoonbeek, M. de Loos, H. Kooijman, A. L. Spek,
R. M. Kellogg and B. L. Feringa, Chem. Eur. J., 1999, 5, 937.
22 F. S. Schoonbeek, J. H. van Esch, R. Hulst, R. M. Kellogg and
B. L. Feringa, Chem. Eur. J., 2000, 6, 2633.
23 M. de Loos, A. G. J. Ligtenbarg, J. van Esch, H. Kooijman, A. L. Spek,
R. Hage, R. M. Kellogg and B. L. Feringa, Eur. J. Org. Chem., 2000,
3675.
24 F. Werner and H.-J. Schneider, Helv. Chim. Acta, 2000, 83, 465.
25 H. Xie, S. Yi, X. Yang and S. Wu, New J. Chem., 1999, 23, 1105.
26 R. Custelcean, B. A. Moyer, V. S. Bryantsev and B. P. Hay, Cryst.
Growth Des., 2006, 6, 555.
27 T. Naota and H. Koori, J. Am. Chem. Soc., 2005, 127, 9324.
28 D. R. Trivedi and P. Dastidar, Chem. Mater., 2006, 18, 1470.
29 P. Terech, D. Pasquier, V. Bordas and C. Rossat, Langmuir, 2000, 16,
4485.
suggests that all of the stacks are orientated in the same direction.
It is thus possible to propose a model for gelation in which gel fibre
growth along the stack axis, promoted by strong urea–urea
hydrogen bonding interactions, is very rapid and results in fibres
long enough to entangle in the time taken to reach the optimum
fibre width by van der Waals packing. Fibre branching to produce
a dendritic 3D network (Fig. 1(c)) is possible by occasional cross-
linking involving breaking the intramolecular urea–urea hydrogen
bond to form a second intermolecular interaction. Dynamic
chloride binding to the three urea groups would significantly retard
the rate of stack growth along the fibre axis resulting in the
observed needle crystals with a much lower length : diameter ratio.
Face indexing of the crystal confirmed that the b axis along which
the urea hydrogen bonding is orientated corresponds to the long
axis of the needle shaped sample.
In conclusion we have demonstrated that molecular properties
such as anion binding affinity and chirality are reflected in the
gelation behaviour of LMWG compound 1. Addition of Cl2 tips
the system from gelation into full crystallisation and suggests a
close correspondence in the gel fibre and single-crystal structures.
The mechanical properties of these kinds of small molecule gel
systems cannot be described by analogy with colloidal gels and a
cellular solid model is more appropriate. This research offers an
insight in to new ways to manipulate, control and understand the
phenomenon of gelation by low molecular weight compounds and
paves the way for tailored gels with novel properties.
30 N. M. Sangeetha, S. Bhat, A. R. Choudhury, U. Maitra and P. Terech,
J. Phys. Chem. B, 2004, 108, 16056.
31 W. H. Shih, W. Y. Shih, S. I. Kim, J. Liu and I. A. Aksay, Phys. Rev. A,
1990, 42, 4772.
32 L. J. Gibson and M. F. Ashby, Proc. R. Soc. London, Ser. A, 1982, 382,
43.
33 L. J. Gibson and M. F. Ashby, Cellular Solids: Structures and
Properties, Cambridge University Press, Cambridge, 2nd edn, 1997.
34 R. Custelcean, B. A. Moyer and B. P. Hay, Chem. Commun., 2005,
5971.
We are grateful to the EPSRC for a post-doctoral grant
(K. M. A.).
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 3199–3201 | 3201