1
1337 cm−1 (heterocyclic ring). 31P{ H} NMR(CDCl3) d: −6.35 (s).
and dihedral angles frozen, single-point DFT calculations were
performed on model 3a. In both the ground-state calculations and
the subsequent calculations of the electronic excitation spectra,
the B3LYP functional24 as implemented in TURBOMOLE25
was used. The excitation energies were obtained at the density
functional level by using the time-dependent perturbation theory
approach (TD-DFT),26–30 which is a DFT generalization of
the Hartree–Fock linear response (HF-LR) or random-phase
approximation (RPA) method.31 In all calculations, the Karlsruhe
split-valence quality basis sets32 augmented with polarization
functions33 were used (SVP). The Stuttgart effective core potential
in TURBOMOLE was used for Au.34 Calculations were performed
without any assumption of symmetry for 1a and 3a.
19F NMR (CDCl3) d: −137.63 [m, 1F, o-S], −146.56 [m, 1F, o-N],
1
−157.72 [m, 1F, p-S], −158.68 [m, 1F, p-N] H NMR(CDCl3) d:
7.56–7.41 [m, aromatic protons].
[AuCl{Ph2P(CNS)(C6F4)}] (2). To a dichloromethane solu-
tion (20 mL) of [AuCl(tht)] (0.08 g, 0.255 mmol) was added
C6F4NCSPPh2 (0.1 g, 0.255 mmol) and after 30 minutes of stirring
the solvent was evaporated to ca. 5 mL. Addition of n-hexane
(20 mL) led to precipitation of complex 2 as a white solid. Yield:
0.14 g (89.8%). Mass spectrum: [M − Cl]+ at m/z = 588.6.
Anal. Calcd for C19H10AuClF4NPS: C, 36.59; H, 1.62; N, 2.24;
S, 5.14. Found C, 36.45; H, 1.65; N, 2.31; S, 4.95%. IR: 1335 cm−1
(heterocyclic ring), 342 cm−1 (Au–Cl). 31P{ H} NMR(CDCl3) d:
1
23.33 (s). 19F NMR (CDCl3) d: −136.27 [m, 1F, o-S], −144.22
[m, 1F, o-N], −154.36 [m, 1F, p-S], −155.05 [m, 1F, p-N] 1H
NMR(CDCl3) d: 7.88–7.25 [m, aromatic protons].
Acknowledgements
The D.G.I.(MEC)/FEDER (CTQ2004-05495) project is acknowl-
edged for financial support. M. Monge thanks the MEC-
Universidad de La Rioja for his research contract “Ramo´n y
Cajal”. M. Montiel thanks the C.A.R. for a grant. Dr A. Avenoza
is acknowledged for fruitful discussions.
¯
Crystal data for 2. C19H10AuClF4NPS, triclinic, P1, a =
◦
˚
8.3342(3), b = 10.2580(3), c = 11.4515(4) A, a = 97.223(1) ,
◦
◦
3
˚
b = 96.787(1) , c = 97.010(1) , V = 955.08(6) A , Z = 2,
l = 8.077 mm−1, 13716 reflections, 2hmax 55.98◦, 4450 unique
(Rint = 0.0630), R = 0.0354, Rw = 0.0864 for 293 parameters,
−3
˚
76 restrictions, S = 1.025, max. Dq = 2.580 e A .
References
[Au(C6F5){Ph2P(CNS)(C6F4)}] (3). To a dichloromethane so-
lution (20 mL) of [Au(C6F5)(tht)] (0.23 g, 0.51 mmol) was added
C6F4NCSPPh2 (0.2 g, 0.51 mmol) and after 1 hour of stirring the
solvent was evaporated to dryness to give a white solid 3. Yield:
0.34 g (78.8%). Mass spectrum: [AuL2]+ (L = C6F4NCSPPh2 1)
at m/z = 979.0 Anal. Calcd for C25H10AuF9NPS: C, 39.75; H,
1.33; N, 1.85; S, 4.24. Found C, 40.07; H, 1.35; N, 1.81; S, 4.06%.
IR: 1356 cm−1 (heterocyclic ring), 1496, 955, 793 cm−1 (Au–C6F5).
1 W. S. Rapson and T. Groenewald, Gold Usage, Academic Press,
London, 1978.
2 P. J. Sadler, Gold Bull., 1976, 9, 110.
3 K. C. Dash and H. Schmidbaur, in Metal Ions in Biological Systems,
ed. H. Sigel, Marcel Dekker, New York, Basel, 1982, vol. 14, p. 179ff.
4 A. Ulman, Chem. Rev., 1996, 96, 1533 and references therein.
5 C. F. Shaw, III, in Gold: Progress in Chemistry, Biochemistry and
Technology, ed. H. Schmidbaur, Wiley, New York, 1999, p. 259ff.
6 (a) O. Crespo, E. J. Ferna´ndez, P. G. Jones, A. Laguna, J. M. Lo´pez-de-
Luzuriaga, M. Monge, M. E. Olmos and J. Pe´rez, Dalton Trans., 2003,
1076; (b) G. Siasios and E. R. T. Tiekink, Malays. J. Sci., Ser. B, 1996,
17, 1.
1
31P{ H} NMR(CDCl3) d: 32.24 (s). 19F NMR (CDCl3) d: −136.45
[m, 1F, o-S, C6F4], −144.58 [m, 1F, o-N, C6F4], −155.04 [m, 1F,
p-S, C6F4], −155.53 [m, 1F, p-N, C6F4]; −116.24 (m, 2F, Fo, C6F5),
−157.45 (t, 1F, Fp, C6F5, J(Fp–Fm) = 20.0 Hz), −162.12 (m, 2F,
Fm, C6F5). 1H NMR(CDCl3) d: 7.95–7.25 [m, aromatic protons].
Crystal data for 3. C25H10AuF9NPS, monoclinic, P21/c, a =
7 T. D. Petrova, V. E. Platonov, L. N. Shchegoleva, A. M. Maksimov, A.
Haas, M. Schelvis and M. Lieb, J. Fluorine Chem., 1996, 79, 13.
8 F. E. Herkes, J. Fluorine Chem., 1979, 13, 1.
9 See for instance: (a) E. J. Ferna´ndez, M. C. Gimeno, P. G. Jones, A.
Laguna, M. Laguna and M. E. Olmos, J. Chem. Soc., Dalton Trans.,
1994, 2891; (b) E. J. Ferna´ndez, M. C. Gimeno, P. G. Jones, A. Laguna,
M. Laguna and M. E. Olmos, J. Chem. Soc., Dalton Trans., 1996, 3603.
10 (a) M. F. M. Al-Dulaymmi, A. Hills, P. B. Hitchcock, D. L. Hughes
and R. L. Richards, J. Chem. Soc., Dalton Trans., 1992, 241–248;
(b) M. F. M. Al-Dulaymmi, P. B. Hitchcock and R. L. Richards,
J. Organomet. Chem., 1988, 338, C31; (c) M. F. M. Al-Dulaymmi,
D. L. Hughes and R. L. Richards, J. Organomet. Chem., 1992, 424, 79.
11 B.-C. Tzeng, Y.-C. Huang, W.-M. Wu, C.-Y. Lee, G.-H. Lee and S.-M.
Peng, Cryst. Growth Des., 2004, 4, 63.
12 K. K.-W. Lo, C.-K. Li and J. S.-Y. Lau, Organometallics, 2005, 24, 4594.
13 Y.-H. So, J. M. Zaleski, C. Murlick and A. Ellaboudy, Macromolecules,
1996, 29, 2783.
14 M. R. Haneline, M. Tsunoda and F. P. Gabba¨ı, J. Am. Chem. Soc.,
2002, 124, 3737.
◦
˚
8.5376(2), b = 18.7340(5), c = 14.7669(4) A, b = 90.757(1) , V =
3
−1
˚
2361.66(11) A , Z = 4, l = 6.473 mm , 18493 reflections, 2hmax
55.70◦, 5465 unique (Rint = 0.0423), R = 0.0265, Rw = 0.0583 for
383 parameters, 123 restrictions, S = 1.040, max. Dq = 1.339 e
−3
˚
A .
Crystal data for 2 and 3 were measured at −100 ◦C using
a Nonius KappaCCD diffractometer, Mo-Ka radiation, x and
φ-scans. The structures were solved by direct methods and
refined anisotropically on F2.23 Hydrogen atoms were located
in the Fourier map and refined without restrictions. Absorption
correction: multi-scan.
15 M. A. Omary, R. M. Kassab, M. R. Haneline, O. Elbjeirami and F. P.
Gabba¨ı, Inorg. Chem., 2003, 42, 2176.
CCDC reference numbers 292271 and 292272.
For crystallographic data in CIF or other electronic format see
DOI: 10.1039/b517728f
16 C. Adachi, M. A. Baldo and S. R. Forrest, J. Appl. Phys., 2000, 87,
8049.
17 V. V. Grushin, N. Herron, D. D. LeCloux, W. J. Marshall, V. A. Petrov
and Y. Wang, Chem. Commun., 2001, 1494.
18 J. Zhang, S. Kan, Y. Ma, J. Shen, W. Chan and C. Che, Synth. Met.,
2001, 121, 1723 and references therein.
Computational details for TD-DFT calculations
The molecular structures used in the theoretical studies on
Ph2P(CNS)(C6F4) 1a and [Au(C6F5){Ph2P(CNS)(C6F4)}] 3a
were taken from the X-ray diffraction data for [Au(C6F5)-
{Ph2P(CNS)(C6F4)}] 3, respectively. For model 1a a full geometry
optimization was carried out. Keeping all distances, angles
19 H. V. R. Dias, H.-L. Lu, H.-J. Kim, S. A. Polach, T. K. H. H. Goh,
R. G. Browning and C. J. Lovely, Organometallics, 2002, 21, 1466 and
references therein.
20 H. V. R. Dias, H.-J. Kim, H.-L. Lu, K. Rajeshwar, N. R. de Tacconi,
A. Derecskei-Kovacs and D. S. Marynick, Organometallics, 1996, 15,
2994 and references therein.
3676 | Dalton Trans., 2006, 3672–3677
This journal is
The Royal Society of Chemistry 2006
©