ORGANIC
LETTERS
2006
Vol. 8, No. 18
3975-3977
Synthesis of Novel Heterocyclic
Structures via Reaction of Isocyanides
with S-trans-Enones
Jeffrey D. Winkler* and Sylvie M. Asselin
Department of Chemistry, UniVersity of PennsylVania,
Philadelphia, PennsylVania 19104
Received June 13, 2006
ABSTRACT
The reaction of enone 1, bearing an internal nucleophilic moiety, i.e., furan or pyrrole (X
)
O, NR
′
), with isocyanides is presented. The
formation of products resulting from the reaction of the zwitterionic intermediate 2 with a second equivalent of isocyanide prior to cyclization
to give 3, as well as the direct formation of 4 from 2, is described.
The cycloaddition of isocyanides with heterodienes affords
a diverse array of five-membered ring products.1-3 Saegusa2
and subsequently Chatani3 have shown that addition of
Scheme 1. Reaction of Isocyanides with S-cis- and
S-trans-Enones
isocyanides to S-cis-enones leads to the formation of imi-
nolactone products, i.e., 7, via intramolecular collapse of the
zwitterionic intermediate 6 that is obtained on Lewis acid-
catalyzed addition of an isocyanide to the enone (Scheme
1). The analogous reaction of an S-trans-enone, i.e., cyclo-
hexenone 8, would generate a zwitterionic intermediate 9
(1) For examples of the cycloaddition of isocyanides with heterodienes
to give five-membered rings, see: (a) Deyrup, J. A.; Killion, K. K.
Heterocycl. Chem. 1972, 1045-1048. (b) Marchand, E.; Morel, G.;
Sinbandhit, S. Eur. J. Org. Chem. 1999, 133, 903-912. (c) Morel, G.;
Marchand, E.; Foucaud, A. J. Org. Chem. 1990, 55, 1721-1727. (d) Morel,
G.; Marchand, E.; Foucaud, A. J. Org. Chem. 1985, 50, 771-778. (e) Morel,
G.; Marchand, E.; Foucaud, A.; Toupet, L. J. Org. Chem. 1989, 54, 1185-
1191. (f) Morel, G.; Marchand, E.; Sinbandhit, S.; Carlier, R. Eur. J. Org.
Chem. 2001, 655-662. (g) Nair, V.; Mathew, B.; Vinod, A. U.; Mathen, J.
S.; Ros, S.; Monon, R. S.; Varma, R. L.; Srinivas, R. Synthesis 2003, 662-
664. (h) Rigby, R. H.; Laurent, S.; Cavezza, A.; Heeg, M. J. J. Org. Chem.
1998, 63, 5587-5591. (i) Rigby, R. H.; Qabar, M.; Ahmed, G.; Hughes,
R. C. Tetrahedron 1993, 49, 10219-10228. (j) Foucaud, A.; Razorilalana-
Rabearivony, C.; Loukakou, E.; Person, H. J. Org. Chem. 1983, 48, 3639-
3644. (k) Quai, M.; Frattini, S.; Vendrame, U.; Mondoni, M.; Dossena, S.;
Cereda, E. Tetrahedron Lett. 2004, 45, 1413-1416. (l) Rigby, J. H.; Qabar,
M. J. Am. Chem. Soc. 1991, 113, 8975-8976.
that could not undergo analogous intramolecular collapse.
However, incorporation of a nucleophilic substituent into 9
would result in intermediate 10, which could undergo
cyclization via addition of the pendant nucleophile (Nu) to
the nitrilium intermediate to give, after protonation, 11. We
report herein that such a strategy leads to a novel approach
to the synthesis of a diverse array of polycyclic ring systems.
(2) Ito, Y.; Kato, H.; Saegusa, T. J. Org. Chem. 1982, 47, 741-743.
(3) (a) Chatani, N.; Oshita, M.; Tobisu, M.; Ishii, Y.; Murai, S. J. Am.
Chem. Soc. 2003, 125, 7812-7813. (b) Oshita, M.; Yamashita, K.; Tobisu,
M.; Chatani, N. J. Am. Chem. Soc. 2005, 127, 761-766.
We first examined the proposed reaction sequence using
furan as the nucleophilic substituent, as shown with 1
10.1021/ol061451c CCC: $33.50
© 2006 American Chemical Society
Published on Web 08/02/2006