10.1002/ejic.201700645
European Journal of Inorganic Chemistry
FULL PAPER
Acknowledgements
Keywords: Ferrocene • Phosphate • Azine • Thioether • Suzuki-
Miyaura Reaction • Imine
M. K. thanks the Fonds der Chemischen Industrie for a Ph.D.
Chemiefonds fellowship. We thank Dipl. Chem. Steve W. Lehrich
for performing the in situ NIR/UV-Vis measurements.
References
1 D. Schaarschmidt, H. Lang, Organometallics 2013, 32, 5668–5740.
2 D. Schaarschmidt, H. Lang, Eur. J. Inorg. Chem. 2010, 4811–4821.
3 M. Korb, D. Schaarschmidt, H. Lang, Organometallics 2014, 33, 2099–2108.
4 J. F. Jensen, M. Johannsen, Org. Lett. 2003, 5, 3025 – 3028.
5 D. Schaarschmidt, M. Grumbt, A. Hildebrandt, H. Lang, Eur. J. Org. Chem.
2014, 6676–6685.
35 a) I. Sato, R. Kodaka, K. Soai, J. Chem. Soc., Perkin Trans. 1 2001, 2912–
2914. b) T. Hayase, Y. Inoue, T. Shibate, K. Soai, Tetrahedron Asymm. 1996,
7, 2509–2510.
36 The Fc–C=N–P structural motif is also present in 2H-azaphosphirenes, as
found by a scifinder search: a) H. Helten, G. Schnakenburg, J. Daniels, A. J.
Arduengo, R. Streubel, Organometallics 2011, 30, 84–91; b) R. Streubel, J. M.
Pérez, H. Helten, J. Daniels, M. Mieger, Dalton Trans. 2010, 39, 11445–
11450; c) H. Helten, M. Beckmann, G. Schnakenburg, R. Streubel, Eur. J.
Inorg. Chem. 2010, 2337–2341. d) H. Helten, S. Fankel, O. Feier-Iova, M.
Nieger, A. E. Ferao, R. Streubel, Eur. J. Inorg. Chem. 2009, 3226–3237; e) R.
Streubel, M. Beckmann, C. Neumann, S. Fankel, H. Helten, O. Feier-Iova, P.
G. Jones, M. Nieger, Eur. J. Inorg. Chem. 2009, 2090–2095.
37 For the synthesis of iminophoramidates by the condensation of an
aminophosphate with a carbonyl compound in the presence of TiCl4, see
reference 20 and: a) Y.-Q. Zhu, L. Qin, Q. Song, F. Su, Y.-J. Xu, L. Dong, Org.
Biomol. Chem. 2016, 14, 9472–9475. b) c) L. Di Bari, S. Guillarme, S.
Hermitage, J. A. K. Howard, D. A. Jay, G. Pescitelli, A. Whiting, D. S. Yufit,
Synlett 2004, 708–710. d) A. Zwierzak, A. Napieraj, Tetrahedron 1996, 52,
8789–8794. e) R. Shintani, M. Murakami, T. Hayashi, Org. Lett. 2009, 11,
457–459.
6 D. Schaarschmidt, A. Hildebrandt, S. Bock, H. Lang, J. Organomet. Chem.
2014, 751, 742–753.
7 D. Schaarschmidt, Dissertation, TU Chemnitz, 2014.
8 D. Schaarschmidt, H. Lang, ACS Catal. 2011, 1, 411–416.
9 M. Korb, H. Lang, Organometallics 2014, 33, 6643–6659.
10 A. Bermejo, A. Ros, R. Fernández, J. M. Lassaletta, J. Am. Chem. Soc.
2008, 130, 15798–15799.
11 A. Karpus, O. Yesypenko, V. Boiko, R. Poli, J.-C. Daran, Z. Voitenko, V.
Kalchenko, E. Manoury, Eur. J. Org. Chem. 2016, 3386–3394.
12 M. Korb, P. J. Swarts, D. Miesel, A. Hildebrandt, J. C. Swarts, H. Lang,
Organometallics 2016, 35, 1287–1300.
13 M. Korb, H. Lang, Eur. J. Inorg. Chem. 2016, 72, 30–32.
14 S. Bayda, A. Cassen, J.-C. Daran, C. Audin, R. Poli, E. Manoury, E.
Daydier, J. Organomet. Chem. 2014, 772–773, 258–264.
15 a) P. Suomalainen, S. Jaaskelainen, M. Haukka, R. H. Laitinen, J.
Pursiainen, T. A. Pakkanen, Eur. J. Inorg. Chem. 2000, 2607–2613. b) O. bin
Shawkataly, Md. A. A. Panhki, I. A. Khan, C. S. Yeap, H.-K. Fun, Acta Cryst.
2009, E65, o2660–o2661.
38 A. Napieraj, S. Zawadzki, A. Zwierzak, Tetrahedron 2000, 56, 6299–6305.
39 L. M. Fleury, E. E. Wilson, M. Vogt, T. J. Fan, A. G. Oliver, B. L. Ashfeld,
Angew. Chem. Int. Ed. 2013, 52, 11589–11593.
40 D. J. Vugts, M. M. Koningstein, R. F. Schmitz, F. J. J. de Kanter, M. B.
Groen, R. V. A. Orru, Chem. Eur. J. 2006, 12, 7178–7189.
16 a) P. Stepnicka, M. Lamac, I. Cisarova, J. Organomet. Chem. 2008, 693,
446–456; b) P. Stepnicka, I. Cisarova, Inorg. Chem. 2006, 45, 8785–8798.
17 The P∙∙∙O distance with 3.165 Å in the molecular solid state structure of
complex C, is slightly increased, due to a rotation of the CH2O group out of the
C5H3 plane by 38.5 ° towards the ferrocenyl backbone. A mathematic
transformation gave a minimum of 2.87 Å for the P∙∙∙O distance. J.-F.
Marcoux, S. Wagaw, S. L. Buchwald, J. Org. Chem. 1997, 62, 1568–1569.
18 R. E. Banks, W. Jondi, A. E. Tipping, J. Chem. Soc., Chem. Commun. 1989,
1268–1269.
41 S. K. Danek, D. P. Kelly, A. K. Serelis, J. Org. Chem. 1987, 52, 2911–2919.
42 a) W. Bernlöhr, M. A. Flamm-ter Meer, J. H. Kaiser, M. Schmittel, H.-D.
Beckhaus, C. Rüchardt, Chem. Ber. 1986, 119, 1911–1918. b) A. Peymann,
E. Hickl, H.-D. Beckhaus, Chem. Ber. 1987, 120, 713–725.
43 a) B. E. Love, L. Tsai, Synth. Commun. 1992, 22, 3101–3108. b) B. E. Love,
L. Tsai, Synth. Commun. 1992, 22, 165–170.
44 V. A. Sauro, M. S. Workentin, Can. J. Chem. 2002, 80, 250–262.
45 J. Nycz, J. Rachon, Phosphorus Sulfur Silicon Relat. Elem. 2000, 161, 39–
59.
19 Iminophosphoramidates havebeen synthesized by, e.g., reacting
azidophosphates and alkynes, see: S. H. Kim, D. Y. Jung, S. Chang, J. Org.
Chem. 2007, 72, 9769–9771.
46 a) N. Ashkenazi, Y. Karton, Y. Segall, Tetrahedron Lett. 2004, 45, 8003–
8006. b) R. Engel, S. Chakraborty, Synth. Commun. 1988, 18, 665–670.
47 a) F. Strehler, A. Hildebrandt, M. Korb, T. Rüffer, H. Lang, Organometallics
2014, 33, 4279–4289; b) F. Strehler, A. Hildebrandt, M. Korb, H. Lang, ZAAG
2013, 639, 1214–1219; c) F. Strehler, M. Korb, E. A. Poppitz, H. Lang, J.
Organomet. Chem. 2015, 786, 1–9; d) F. Strehler, A. Hildebrandt, M. Korb, T.
Rüffer, H. Lang, Organometallics 2014, 33, 4279–4289; e) F. Strehler, M.
Korb, T. Rüffer, A. Hildebrandt, H. Lang, Eur. J. Inorg. Chem. 2016, 72, 30–32;
f) F. Strehler, M. Korb, H. Lang, Acta Cryst 2015, E71, 244–247; g) F. Strehler,
M. Korb, H. Lang, Acta Cryst. 2015, E71, 398–401.
20 X. Hao, Q. Chen, K.-I. Yamada, Y. Yamamoto, K. Tomioka, Tetrahedron
2011, 67, 6469–6473.
21 a) S.-S. Li, L. Wu, L. Qin, Y.-Qin Zhu, F. Su, Y.-J. Xu, L. Dong, Org. Lett.
2016, 18, 4214–4217. b) C. Brown, R. F. Hudson, A. Maron, K. A. F. Record,
J. Chem. Soc., Chem. Commun. 1976, 663–664. c) R. F. Hudson, C. Brown,
A. Maron, Chem. Ber. 1982, 115, 2560–2573.
22 P. Gangaram, C. Manab, J. Org. Chem. 2016, 81, 2135–2142.
23 a) N. M. Liom, P. V. Petrovskii, V. I. Robas, Z. N. Parnes, D. N. Kursanov, J.
Organomet. Chem. 1976, 117, 265–276. b) T. S. Abram, W. E. Watts, J.
Organomet. Chem. 1975, 97, 429–441. c) A. A. Koridze, P. V. Petrovskii, S. P.
Gubin, V. I. Sokolov, A. I. Mokhov, J. Organomet. Chem. 1977, 136, 65–71. d)
B. Misterkiewicz, R. Dabard, H. Patin, Tetrahedron 1985, 41, 1685–1692.
24 X. Xu, R. Jiong, X. Zhou, Y. Liu, S. Ji, Y. Zhang, Tetrahedron 2009, 65,
877–882.
48 a) W. Fan, S. Kong, Y. Cai, G. Wu, Z. Miao, Org. Biomol. Chem. 2013, 11,
3223–3229. b) S. Zhu, W. Yan, B. Mao, X. Jiang, R. Wang, J. Org. Chem.
2009, 74, 6980–6985. c) R. Blaszczyk, T. Gajda, Tetrahedron Lett. 2007, 48,
5859–5863.
49 H. Sun, T. Rajale, Y. Pan, G. Li, Tetrahedron Lett. 2010, 51, 4403–4407.
50 B. Bildstein, M. Malaun, H. Kopacka, M. Fontani, P. Zanello, Inorg. Chim.
Acta 2000, 300–302, 16–22.
25 J. Ran, S. Yechen, Z. Ying, X. Xiaoping, S. Jinjun, J. Shunhun, Chin. J.
Chem. 2011, 29, 1887–1893.
51 Y. Li ,M. Josowicz, L. M. Tolbert, J. Am. Chem. Soc. 2010, 132, 10374–
10382.
26 H. A. Meylemans, R. L. Quintana, B. R. Goldsmith, B. G. Harvey,
ChemSusChem 2011, 4, 465–469.
52 a) U. Pfaff, G. Filipczyk, A. Hildebrandt, M. Korb, H. Lang, Dalton Trans.
2014, 43, 16310–16321; b) U. Pfaff, A. Hildebrandt, M. Korb, D.
Schaarschmidt, M. Rosenkranz, A. Popov, H. Lang, Organometallics 2015, 34,
2826–2840; c) U. Pfaff, A. Hildebrandt, M. Korb, S. Oßwald, M. Linseis, K.
Schreiter, S. Spange, R. F. Winter, H. Lang, Chem. Eur. J. 2015, 21, 1–20; d)
U. Pfaff, A. Hildebrandt, M. Korb, H. Lang, Polyhedron 2015, 86, 6–9.
53 a) M. Omedes, P. Gómez-Sal, J. Andriès, A. Moyano, Tetrahedron 2008,
64, 3953–3959. b) A. Mroczek, G. Erre, R. Taras, S. Gladiali, Tetrahedron:
Asymm. 2010, 21, 1921–1927. c) O. Riant, O. Samuel, H. B. Kagan, J. Am.
Chem. Soc. 1993, 115, 5835–5836. d) O. Riant, O. Samuel, T. Flessner, S.
Taudien, H. B. Kagan, J. Org. Chem. 1997, 62, 6733–6745. e) H. Wolfle, H.
Kopacke, K. Wurst, K.-H. Ongania, H.-H. Görtz, P. Preishuber-Pflügl, B.
Bildstein, J. Organomet. Chem. 2006, 691, 1197–1215. f) J.G. Lopez Cortes,
O. Ramon, S. Vincendeau, D. Serra, F. Lamy, J.-C. Daran, E. Manoury, M.
Gouygou, Eur. J. Inorg. Chem. 2006, 5148–5157.
27 F. H. Hon, T. T. Tidwell, J. Org. Chem. 1972, 37, 1782–1786.
28 R. Sanders, U. T. Mueller-Westerhoff, J. Organomet. Chem. 1996, 512,
219–224.
29 V. Dimitrov, M. Genov, S. Simova, A. Linden, J. Organomet. Chem. 1996,
525, 213–223. V. Dimitrov, K. Kostova, M. Genov, Tetrahedron Lett. 1996, 37,
6787–6790.
30 G. M. Dobrikov, I. Philipova, R. Nikolova, B. Shivachev, A. Chimov, V.
Dimitrov, Polyhedron 2012, 45, 126–143.
31 Y. J. Jang, O. G. Tsay, D. P. Murale, J. A. Jeong, A. Segev, D. G. Churchill,
Chem. Commun. 2014, 50, 7531–7534.
32 P. N. Kelly, A. Prêtre, S. Devoy, I. O’Rielly, R. Devery, A. Goel, J. F.
Gallagher, A. J. Lough, J. Organomet. Chem. 2007, 692, 1327–1331.
33 M. Topolski, J. Rachon, Org. Prep. Proced. Int. 1991, 23, 211–213.
34 M. Korb, S. W. Lehrich, H. Lang, J. Org. Chem. 2017, 82, 3102–3124.
54 G. D. Broadhead, J. M. Osgerby, P. L. Pauson, J. Chem. Soc. 1958, 650–
656.
This article is protected by copyright. All rights reserved.