A R T I C L E S
Scheme 1
Filichev and Pedersen
O-(1-pyrenylmethyl)glycerol in the middle of the oligodeoxy-
nucleotides (INA) resulted in significantly increased affinities
toward complementary ssDNA, whereas INA/RNA duplexes
and the Hoogsteen-type triplex and duplex were destabilized.9a,e
It has to also be mentioned that mismatch sensitivity on duplex
formation was maintained upon bulged insertions of intercalators
into the oligodeoxynucleotides.9b The unique combination of
the flexible, short glycerol linker which distorted the phosphate
backbone and the appropriate intercalator which stabilized INA/
DNA duplex by desolvation and by stacking with nucleobases
led to a valuable molecule which is now used in nucleic acid
chemical biology.10
We decided to explore this type of intercalator for the design
of TFO. To enhance the stability of the TFO using a short and
flexible linker, the aromatic structure of intercalators should be
long enough to place an intercalator into the dsDNA part of
the triple helix. Therefore, (R)-1-O-(4-polyaryl-phenyl)meth-
ylglycerol could be a good choice because phenyl could also
mimic a nucleobase in the TFO part of the triple helix. The
polyaryl intercalator can also be attached to this phenyl via an
acetylene bridge which provides the necessary structural rigidity
and twisting ability and still unites the aromatic structures. The
acetylene bond itself is believed to improve the intercalating
properties.11 According to the molecular modeling of (R)-1-O-
[4-(1-pyrenylethynyl)phenylmethyl]glycerol by MacroModel
8.0, there is a twisting of 1-pyrenyl and phenyl residues around
the triple bond with a torsion angle of 15.3°. It is believed that
this twisting ability can help the intercalator to adjust itself to
an appropriate position inside the dsDNA. Therefore, we refer
to this type of nucleic acid as a twisted intercalating nucleic
acid (TINA, Scheme 1). In a recent work, we deduced from
molecular modeling that twisting of aromatics around triple
bonds was a contributing factor to stabilize the intercalating
moiety in 5′-5′ alternate strand triplexes.7e Here, we report the
postsynthetic Sonogashira-type on-column derivatization of
oligodeoxynucleotides leading to different TINAs, which were
found to have extraordinarily high affinities in Hoogsteen-type
duplexes and triplexes. Thermal stability and fluorescence
studies of nucleic acid helixes with insertion of TINA monomers
as a bulge formed according to either the Watson-Crick or
Hoogsteen binding mode are also discussed.
with the synthesis of at least four nucleotide monomers needed
for sugar-modified nucleic acids, the synthesis of one phos-
phoramidite of intercalating pseudonucleotides is required.
Second, several bulged insertions of an intercalator monomer
into the sequence could considerably increase duplex and triplex
stabilities compared to the single insertion. Moreover, the
structural difference between Watson-Crick and Hoogsteen
binding modes along with the absence or presence of 2′-OH in
DNA and RNA gives rise to different properties for the various
types of helixes. As a result, bulged insertions of a linker and
the breaking up of the helix by intercalators are expected to
give unique properties for appropriately chosen helixes. This
has led to chemically modified oligonucleotides which could
discriminate between different types of single-stranded nucleic
acids. Recently, we have reported the synthesis and properties
of several intercalating nucleic acids designed for Watson-
Crick-type duplexes (Scheme 1).9 Bulged insertions of (R)-1-
(6) (a) Marchand, C.; Bailly, C.; Nguyen, C.-H.; Bisagni, E.; Garestier, T.;
Helene, C.; Waring, M. J. Biochemistry 1996, 35, 5022-5032. (b) Kukreti,
S.; Sun, J.-S.; Loakes, D.; Brown, D. M.; Nguyen, C.-H.; Bisagni, E.;
Garestier, T.; Helene, C. Nucleic Acids Res. 1998, 26, 2179-2183. (c)
Cassidy, S. A.; Strekowski, L.; Fox, K. R. Nucleic Acids Res. 1996, 24,
4133-4138. (d) Escude, C.; Sun, J.-S.; Nguyen, C.-H.; Bisagni, E.;
Garestier, T.; Helene, C. Biochemistry 1996, 35, 5735-5740. (e) Strekow-
ski, L.; Say, M.; Zegrocka, O.; Tanious, F. A.; Wilson, W. D.; Manzel, L.;
Macfarlane, D. E. Bioorg. Med. Chem. 2003, 11, 1079-1085. (f)
Strekowski, L.; Hojjat, M.; Wolinska, E.; Parker, A. N.; Paliakov, E.;
Gorecki, T.; Tanious, F. A.; Wilson, W. D. Bioorg. Med. Chem. Lett. 2005,
15, 1097-1100. (g) Sandstrom, K.; Warmlander, S.; Bergman, J.; Engqvist,
R.; Leijon, M.; Graslund, A. J. Mol. Recognit. 2004, 17, 277-285.
(7) (a) Puri, N.; Zamaratski, E.; Sund, C.; Chattopadhyaya, J. Tetrahedron 1997,
53, 10409-10432. (b) Mouscadet, J.-F.; Ketterle, C.; Goulaouic, H.;
Carteau, S.; Subra, F.; Le Bret, M.; Auclair, C. Biochemistry 1994, 33,
4187-4196. (c) Mohammadi, S.; Slama-Schwok, A.; Leger, A.; El
Manouni, D.; Shchyolkina, A.; Leroux, Y.; Taillandier, E. Biochemistry
1997, 36, 14836-14844. (d) Cheng, E.; Asseline, U. Tetrahedron Lett.
2001, 42, 9005-9010. (e) Jessen, C. H.; Pedersen, E. B. HelV. Chim. Acta
2004, 87, 2465-2471.
(8) (a) Zhou, B.-W.; Puga, E.; Sun, J.-S.; Garestier, T.; Helene, C. J. Am. Chem.
Soc. 1995, 117, 10425-10428. (b) Kukreti, S.; Sun, J.-S.; Garestier, T.;
Helene, C. Nucleic Acids Res. 1997, 25, 4264-4270. (c) Ossipov, D.;
Zamaratski, E.; Chattopadhyaya, J. HelV. Chim. Acta 1999, 82, 2186-
2200. (d) Abdel-Rahman, A. A.-H.; Ali, O. M.; Pedersen, E. B. Tetrahedron
1996, 52, 15311-15324. (e) Aubert, Y.; Asseline, U. Org. Biomol. Chem.
2004, 2, 3496-3503.
(9) (a) Christensen, U. B.; Pedersen, E. B. Nucl. Acids Res. 2002, 30, 4918-
4925. (b) Christensen, U. B.; Pedersen, E. B. HelV. Chim. Acta 2003, 86,
2090-2097. (c) Filichev, V. V.; Pedersen, E. B. Org. Biomol. Chem. 2003,
1, 100-103. (d) Filichev, V. V.; Hilmy, K. M. H.; Christensen, U. B.;
Pedersen, E. B. Tetrahedron Lett. 2004, 45, 4907-4910. (e) Christensen,
U. B.; Wamberg, M.; El-Essawy, F. A. G.; Ismail, A. E.-H.; Nielsen, C.
B.; Filichev, V. V.; Jessen, C. H.; Petersen, M.; Pedersen, E. B. Nucleosides,
Nucleotides Nucleic Acids 2004, 23, 207-225. (f) Nielsen, C. B.; Petersen,
M.; Pedersen, E. B.; Hansen, P. E.; Christensen, U. B. Bioconjugate Chem.
2004, 15, 260-269.
Results and Discussion
The postsynthetic oligonucleotide modification is a better
alternative to the routine and time-consuming preparation of
several pseudonucleoside phosphoramidites, which are required
for the selection of the right candidate for TINA. There have
been several reports devoted to the palladium(0)-catalyzed
modification of oligonucleotides during solid-phase synthesis.12
Sonogashira coupling conditions were found to be compatible
(10) (a) Filichev, V. V.; Vester, B.; Hansen, L. K.; Abdel Aal, M. T.; Babu, B.
R.; Wengel, J.; Pedersen, E. B. ChemBioChem 2005, 6, 1181-1184. (b)
Filichev, V. V.; Christensen, U. B.; Pedersen, E. B.; Babu, B. R.; Wengel,
J. ChemBioChem 2004, 5, 1673-1679. (c) Loue¨t, S. Bioentrepreneur 23
available from Human Genetic Signatures Pty Ltd., Sydney, Australia.
(11) (a) Froehler, B. C.; Wadwani, S.; Terhorst, T. J.; Gerrard, S. R. Tetrahedron
Lett. 1992, 33, 5307-5310. (b) Sa´gi, J.; Szemzo¨, A.; EÄ binger, K.; Szabolcs,
A.; Sa´gi, G.; Ruff, E.; O¨ tvo¨s, L. Tetrahedron Lett. 1993, 34, 2191-2194.
(c) Colocci, N.; Dervan, P. B. J. Am. Chem. Soc. 1994, 116, 785-786.
(12) (a) Khan, S. I.; Grinstaff, M. W. J. Am. Chem. Soc. 1999, 121, 4704-
4705. (b) Beilstein, A. E.; Grinstaff, M. W. Chem. Commun. 2000, 509-
510. (c) Rist, M.; Amann, N.; Wagenknecht, H.-A. Eur. J. Org. Chem.
2003, 2498-2504. (d) Mayer, E.; Valis, L.; Wagner, C.; Rist, M.; Amann,
N.; Wagenknecht, H.-A. ChemBioChem 2004, 5, 865-868.
9
14850 J. AM. CHEM. SOC. VOL. 127, NO. 42, 2005