C O M M U N I C A T I O N S
References
(1) For selected references, see: (a) Hill, A. F.; Owen, G. R.; White, A. J.
P.; Williams, D. J. Angew. Chem., Int. Ed. 1999, 38, 2759-2761. (b)
Mihalcik, D. J.; White, J. L.; Tanski, J. M.; Zakharov, L. N.; Yap, G. P.
A.; Incarvito, C. D.; Rheingold, A. L.; Rabinovitch, D. J. Chem. Soc.,
Dalton Trans. 2004, 1626-1634. (c) Crossley, I. R.; Hill, A. F.; Willis,
A. C. Organometallics 2005, 24, 1062-1064. (d) Crossley, I. R.; Hill,
A. F.; Willis, A. C. Organometallics 2006, 25, 289-299. (e) Landry, V.
K.; Melnick, J. G.; Buccella, D.; Pang, K.; Ulichny, J. C.; Parkin, G.
Inorg. Chem. 2006, 45, 2588-2597. (f) Blagg, R. J.; Charmant, J. P. H.;
Connelly, N. G.; Haddow, M. F.; Orpen, A. G. Chem. Commun. 2006,
2350-2352.
(2) Related M f B interactions have been pointed out in boryl-bridged
complexes: (a) Curtis, D.; Lesley, M. J. G.; Norman, N. C.; Orpen, A.
G.; Starbuck, J. J. Chem. Soc., Dalton Trans. 1999, 1687-1694. (b)
Westcott, S. A.; Marder, T. B.; Baker, R. T.; Harlow, R. L.; Calabrese, J.
C.; Lam, K. C.; Lin, Z. Polyhedron 2004, 23, 2665-2677. (c) Braun-
schweig, H.; Radacki, K.; Rais, D.; Whittell, G. R. Angew. Chem., Int.
Ed. 2005, 44, 1192-1193.
(3) Related Ta f B interactions have been pointed out in borataalkene η2-
complexes: Cook, K. S.; Piers, W. E.; McDonald, R. J. Am. Chem. Soc.
2002, 124, 5411-5418 and references therein.
(4) For Cp complexes featuring boryl bridges or pendant boryl groups, see
(a) Piers, W. E. Chem.sEur. J. 1998, 4, 13-18. (b) Lancaster, S. J.; Al-
Benna, S.; Thornton-Pett, M.; Bochmann, M. Organometallics 2000, 19,
1599-1608. (c) Braunschweig, H.; Breitling, F. M.; Gullo, E.; Kraft, M.
J. Organomet. Chem. 2003, 680, 31-42. (d) Aldridge, S. A.; Bresner, C.
Chem. Soc. ReV. 2003, 244, 71-92. (e) Hill, M.; Erker, G.; Kehr, G.;
Fro¨hlich, R.; Kataeva, O. J. Am. Chem. Soc. 2004, 126, 11046-11057.
Figure 1. Thermal ellipsoid diagram (50% probability) of 2a (left) and 3b
(right). Selected bond lengths (Å) and angles (deg): (2a) P1-Pd1 2.296(5),
Pd1-Cl1 2.352(1), Cl1-B1 2.165(2), Pd1-C1 2.136(2), Pd1-C3 2.205(2),
C5-B1-C16113.14(17),C5-B1-C22118.37(17),C16-B1-C22117.58(17);
(3b) P1-Au1 2.242(2), Au1-Cl1 2.302(2), Au1-B1 2.663(8), P1-Au1-
Cl1 170.18(6), C1-B1-C13 125.6(6), C1-B1-C24 127.8(7), C13-B1-
C24 102.4(6).
Table 1. Experimental and Theoretical (*) Data for Complexes
3a,b: Selected Bond Length (Å), Boron Pyramidalization and
Torsion Angle (deg), and Total Atomic and Fragment Charges
Derived from NPA Analyses
geometric data
BR
NPA charges
complex
AuB
Σ
AuPCC
P
Au
Cl
BR′
2
3a
3b
3a*
3b*
2.90
2.66
2.99
2.63
358.6
355.8
358.5
353.8
30.0
13.1
21.1
5.7
(5) For a cooperative activation of dba between Pd and a phosphine-
thioether-borane ligand, see Emslie, D. J. H.; Blackwell, J. M.; Britten,
J. F.; Harrington, L. E. Organometallics 2006, 25, 2412-2414.
1.00
1.02
0.31
0.41
-0.58
-0.57
0.29
0.14
(6) Fontaine, F.-G.; Zargarian, D. J. Am. Chem. Soc. 2004, 126, 8786-8794.
(7) Bontemps, S.; Gornitzka, H.; Bouhadir, G.; Miqueu, K.; Bourissou, D.
Angew. Chem., Int. Ed. 2006, 45, 1611-1614.
To gain further insight into the unusual AuB interactions
encountered in complexes 3a,b, DFT calculations were carried out
at the BP86/[LanL2DZ(Au),6-31G*(C,P,B,Cl,H)] level of theory.9
The optimized geometries well reproduced those obtained experi-
mentally (Table 1). Noteworthy, the shortening of the AuB distance
from 3a to 3b is accompanied by a significant decrease of the total
natural charge for the BR′2 fragment (from 0.29 to 0.14), as derived
from Natural Population Analyses (NPA).17 The noticeable influ-
ence of the boron electrophilicity supports some transfer of electron
density from the metal to the σ-acceptor ligand. This is further
substantiated by the increase predicted for the charge of the gold
atom from (i-Pr2PPh)AuCl (0.25) to 3a (0.31) and 3b (0.41). The
contribution of such donor (Au) f acceptor (B) interactions in
complexes 3a,b was also evidenced by second-order perturbation
theory analyses (NBO calculations).9 So far, M f B interactions
have only been characterized in 16e or 18e complexes using tri- or
tetra-dentate ligands.1,7 Complexes 3 provide evidence for such
interactions that occur in 14e complexes and that are supported by
a single donor buttress.
(8) A related complex featuring a P f Ru-H f B interaction has been
obtained by borane insertion into a Ru-C bond: Baker, R. T.; Calabrese,
J. C.; Westcott, S. A.; Marder, T. B. J. Am. Chem. Soc. 1995, 117, 8777-
8784.
(9) See Supporting Information for details.
(10) According to 31P and 11B NMR spectroscopy, 1a adopts a monomeric
structure in solution, the steric hindrance around boron apparently
preventing dimerization as well as solvent coordination.
(11) According to the Cambridge Structural Database, the structural charac-
terization of M-Cl f B interactions has so far been limited to a few
titanium complexes featuring the CpB(C6F5)2 ligand4b and to an osmium
complex featuring an amido-borane ligand: Crevier, T. J.; Bennett, B.
K.; Soper, J. D.; Bowman, J. A.; Dehestani, A.; Hrovat, D. A.; Lovell,
S.; Kaminsky, W.; Mayer, J. M. J. Am. Chem. Soc. 2001, 123, 1059-
1071.
(12) Large Au‚‚‚Au distances (> 5.5 Å) were observed in 3a,b, precluding
aurophilic interactions (Schmidbaur, H. Chem. Soc. ReV. 1995, 24, 391-
400).
(13) Braunstein, Herberich et al. proposed that weak AuB interactions might
be responsible for the sterically congested conformation adopted by a
borole FeAu2 cluster (AuB distances of 3.06 and 3.30 Å): Braunstein,
P.; Herberich, G. E.; Neuschu¨tz, M.; Schmidt, M. U.; Englert, U.; Lecante,
P.; Mosset, A. Organometallics 1998, 17, 2177-2182.
(14) M f B interactions without boron pyramidalization have already been
observed in boryl bridged complexes.2a,b
In conclusion, monophosphine-boranes were shown to behave
as bidentate ambiphilic ligands via P f M-X f B or P f M f
B interactions. Further investigations are currently in progress (i)
to evaluate the scope of such unusual bonding situations with
regards to the metal and co-ligands involved, (ii) to precise the
relative stability of the various coordination modes for a given
complex, and (iii) to determine the influence of the boron
coordination on the geometry and reactivity of the resulting
complexes.18,19
(15) (a) Eisch, J. J.; Galle, J. E.; Kozima, S. J. Am. Chem. Soc. 1986, 108,
379-385. (b) Chase, P. A.; Piers W. E.; Patrick, B. O. J. Am. Chem. Soc.
2000, 122, 12911-12912.
(16) (a) Romero, P. E.; Piers, W. E.; Decker, S. A.; Chau, D.; Woo, T. K.;
Parvez, M. Organometallics 2003, 22, 1266-1274. (b) Hoefelmeyer, J.
D.; Sole´, S.; Gabba¨ı, F. P. J. Chem. Soc., Dalton Trans. 2004, 1254-
1258.
(17) The same trend, AuB shortening and decrease of the BR′2 charge, was
predicted from 3b to its perfluorinated analogue [i-Pr2PPhBFlu(F8)]AuCl
featuring a borafluorene moiety of higher electrophilicity but similar steric
demand.
(18) For theoretical investigations of the deviation of ML4 complexes from
planarity upon interaction with Lewis acids, see Aullo´n, G.; Alvarez, S.
Inorg. Chem. 1996, 35, 3137-3144. For theoretical investigations of
coordination number and deformation energy in d10 complexes of group
11 metals, see Carvajal, M. A.; Novoa, J. J.; Alvarez, S. J. Am. Chem.
Soc. 2004, 126, 1465-1477.
(19) The critical role of acid cocatalysts in gold(I)-mediated transformations
has been recently highlighted: (a) Dyker, G. Angew. Chem., Int. Ed. 2000,
39, 4237-4239. (b) Hoffmann-Ro¨der, A.; Krause, N. Org. Biomol. Chem.
2005, 3, 387-391. (c) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2005,
44, 6990-6993.
Acknowledgment. We are grateful to the CNRS, UPS, and
French Ministry of Research and New Technologies (Grant ACI
JC4091) for financial support of this work. IDRIS (CNRS, Orsay,
France) is acknowledged for calculation facilities.
Supporting Information Available: Experimental and computa-
tional details; spectroscopic and X-ray crystallographic data for 1-3
(PDF, CIF). This material is available free of charge via the Internet at
JA0637494
9
J. AM. CHEM. SOC. VOL. 128, NO. 37, 2006 12057