A R T I C L E S
Zhu et al.
Figure 1. Intermolecular hydrogen-bonding-driven self-assembly of homoduplexes, directed by the backbone preorganization.
heteroduplexes.9 To achieve high binding stability and selectiv-
ity, both strategies require preorganization and rigidity of the
backbones and binding sites of monomers, which is usually
realized by making use of intramolecular hydrogen bonding.10
Foldamers are linear molecules that are induced by nonco-
valent forces to adopt well-established secondary structures.11
Also due to its directionality and strength, hydrogen bonding
has proven itself to be highly efficient for constructing this
family of structurally unique artificial secondary structures.11
Particularly, a number of hydrogen-bonding-mediated aromatic
amide foldamers of well-defined conformations have been
assembled,12-22 some of which represent a new generation of
non-ring receptors for saccharides,21b,c alkylammoniums,21d or
encapsulation of water.22b As part of a program in hydrogen-
bonding-mediated self-assembly, we reported the construction
of a new series of planar zigzag artificial secondary structures.23
Recently we succeeded in utilizing them as rigidified backbones
to develop assembled zinc porphyrin molecular tweezers that
are able to efficiently complex fullerene and several fullerene
derivatives.24 One critical feature of the new assembled tweezers
is the predictable preorganization of their aromatic oligoamide
backbones, driven by consecutive intramolecular hydrogen
bonds. In this paper, we report that this strategy has been
successfully used to assemble two new classes of highly stable
homoduplexes by making use of the cooperative interaction of
amides, the simplest self-binding motif of hydrogen binding,
as the driving force.
(8) (a) Archer, E. A.; Sochia, A. E.; Krische, M. J. Chem. Eur. J. 2001, 7,
2059. (b) Archer, E. A.; Cauble, D. F., Jr.; Lynch, V.; Krische, M. J.
Tetrahedron 2002, 58, 721. (c) Archer, E. A.; Krische, M. J. J. Am. Chem.
Soc. 2002, 124, 5074. (d) Gong, H.; Krische, M. J. J. Am. Chem. Soc.
2005, 127, 1719.
(9) Zhao, X.; Wang, X.-Z.; Jiang, X.-K.; Chen, Y.-Q.; Li, Z.-T.; Chen, G.-J.
J. Am. Chem. Soc. 2003, 125, 15128.
Results and Discussion
Previous investigations have demonstrated that the back-
bones of oligomers 1 adopt a rigidified zigzag conformation.23
It was envisioned that iterative introduction of recogni-
tion residues at the 5-positions of the phthalic diamide
moieties of the oligomers would produce rigidified, highly
preorganized monomers which could self-assemble to generate
new zipper-styled molecular duplexes as a result of cooperative
intermolecular interactions (Figure 1). Compounds 2-7, which
possess two to four amide units, were therefore designed and
(10) Hydrogen-bonded duplexes from un-preorganized monomers have been
reported: (a) Bisson, A. P.; Carver, F. J.; Eggleston, D. S.; Haltiwanger,
R. C.; Hunter, C. A.; Livingstone, D. L.; McCabe, J. F.; Rotger, C.; Rowan,
A. E. J. Am. Chem. Soc. 2000, 122, 8856. (b) Mayer, M. F.; Nakashima,
S.; Zimmerman, S. C. Org. Lett. 2005, 7, 3005.
(11) For reviews, see: (a) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173. (b)
Stigers, K. D.; Soth, M. J.; Nowick, J. S. Curr. Opin. Chem. Biol. 1999, 3,
714. (c) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S.
Chem. ReV. 2001, 101, 3893. (d) Cubberley, M. S.; Iverson, B. L. Curr.
Opin. Chem. Biol. 2001, 5, 650. (e) Schmuck, C. Angew. Chem., Int. Ed.
2003, 42, 2448. (f) Huc, I. Eur. J. Org. Chem. 2004, 17. (g) Cheng, R. P.
Curr. Opin. Struct. Biol. 2004, 14, 512. (h) Sanford, A.; Yamato, K.; Yang,
X. W.; Yuan, L. H.; Han, Y. H.; Gong, B. Eur. J. Biochem. 2004, 271,
1416. (i) Licini, G.; Prins, L. J.; Scrimin, P. Eur. J. Org. Chem. 2005, 969.
(j) Stone, M. T.; Heemstra, J. M.; Moore, J. S. Acc. Chem. Res. 2006, 39,
11.
(18) (a) Hunter, C. A.; Spitaleri, A.; Tomas, S. Chem. Commun. 2005, 3691.
(b) Hu, Z.-Q.; Hu, H.-Y.; Chen, C.-F. J. Org. Chem. 2006, 71, 1131.
(19) Kanamori, D.; Okamura, T.; Yamamoto, H.; Ueyama, N. Angew. Chem.,
Int. Ed. 2005, 44, 969.
(20) Masu, H.; Sakai, M.; Kishikawa, K.; Yamamoto, M.; Yamaguchi, K.;
Kohmoto, S. J. Org. Chem. 2005, 70, 1423.
(21) (a) Wu, Z.-Q.; Jiang, X.-K.; Zhu, S.-Z.; Li, Z.-T. Org. Lett. 2004, 6, 229.
(b) Hou, J.-L.; Shao, X.-B.; Chen, G.-J.; Zhou, Y.-X.; Jiang, X.-K.; Li,
Z.-T. J. Am. Chem. Soc. 2004, 126, 12386. (c) Yi, H.-P.; Shao, X.-B.;
Hou, J.-L.; Li, C.; Jiang, X.-K.; Li, Z.-T. New J. Chem. 2005, 29, 1213.
(d) Li, C.; Ren, S.-F.; Hou, J.-L.; Yi, H.-P.; Zhu, S.-Z.; Jiang, X.-K.; Li,
Z.-T. Angew. Chem., Int. Ed. 2005, 44, 5725. (e) Hou, J.-L.; Yi, H.-P.;
Shao, X.-B.; Li, C.; Wu, Z.-Q.; Jiang, X.-K.; Wu, L.-Z.; Tung, C.-H.; Li,
Z.-T. Angew. Chem., Int. Ed. 2006, 45, 796.
(22) (a) Jiang, H.; Le´ger, J.-M.; Huc, I. J. Am. Chem. Soc. 2003, 125, 3448. (b)
Garric, J.; Le´ger, J.-M.; Huc, I. Angew. Chem., Int. Ed. 2005, 44, 1954. (c)
Dolain, C.; Zhan, C.; Le´ger, J.-M.; Daniels, L.; Huc, I. J. Am. Chem. Soc.
2005, 127, 2400.
(23) Zhu, J.; Wang, X.-Z.; Chen, Y.-Q.; Jiang, X.-K.; Chen, X.-Z.; Li, Z.-T. J.
Org. Chem. 2004, 69, 6221.
(24) Wu, Z.-Q.; Shao, X.-B.; Li, C.; Hou, J.-L.; Wang, K.; Jiang, X.-K.; Li,
Z.-T. J. Am. Chem. Soc. 2005, 127, 17460.
(12) (a) Hamuro, Y.; Geib, S. J.; Hamilton, A. D. J. Am. Chem. Soc. 1996, 118,
7529. (b) Hamuro, Y.; Geib, S. J.; Hamilton, A. D. J. Am. Chem. Soc.
1997, 119, 10587.
(13) (a) Corbin, P. S.; Zimmerman, S. C.; Thiessen, P. A.; Hawryluk, N. A.;
Murray, T. J. J. Am. Chem. Soc. 2001, 123, 10475. (b) Mayer, M. F.;
Nakashima, S.; Zimmerman, S. C. Org. Lett. 2005, 7, 3005. (c) Violette,
A.; A.-P., Marie C.; Semetey, V.; Hemmerlin, C.; Casimir, R.; Graff, R.;
Marraud, M.; Rognan, D.; Guichard, G. J. Am. Chem. Soc. 2005, 127, 2156.
(d) Sinkeldam, R. W.; van Houtem, M. H. C. J.; Koeckelberghs, G.;
Vekemans, J. A. J. M.; Meijer, E. W. Org. Lett. 2006, 8, 383.
(14) (a) Yang, X. W.; Martinovic, S.; Smith, R. D.; Gong, B. J. Am. Chem.
Soc. 2003, 125, 9932. (b) Yang, X. W.; Yuan, L. H.; Yamato, K.; Brown,
A. L.; Feng, W.; Furukawa, M.; Zeng, X. C.; Gong, B. J. Am. Chem. Soc.
2004, 126, 3148.
(15) Kolomiets, E.; Berl, V.; Odriozola, I.; Stadler, A.-M.; Kyritsakas, N.; Lehn,
J.-M. Chem. Commun. 2003, 2868.
(16) (a) Recker, J.; Tomcik, D.; Parquette, J. R. J. Am. Chem. Soc. 2000, 122,
10298. (b) Huang, B.; Prantil, M. A.; Gustafson, T. L.; Parquette, J. R. J.
Am. Chem. Soc. 2003, 125, 14518.
(17) Yang, D.; Li, W.; Qu, J.; Luo, S.-W.; Wu, Y.-D. J. Am. Chem. Soc. 2003,
125, 13018.
9
12308 J. AM. CHEM. SOC. VOL. 128, NO. 37, 2006