184
A.A. Bredikhin et al. / Journal of Molecular Structure 1032 (2013) 176–184
from Table 2 that the parameters of the intermolecular interac-
tions, responsible for supramolecular organization of the crystals
(S)-9 and rac-9, are also close. Fig. 11 shows a fragment of molec-
ular packing in rac-9 crystals. We see here the same corrugated
layers with alternating hydrophilic and hydrophobic zones, as in
Fig. 9a.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
07.053. These data include MOL files and InChiKeys of the most
important compounds described in this article.
All these facts indicate the isostructural crystalline organization
of (S)-9 and rac-9. However, it should be remembered that while
the molecules of only one configuration are involved in the con-
struction of homochiral crystals, pairs of molecules of opposite
configuration by definition are involved in the construction of race-
mic crystals. This, in turn, means that the isostructurality can be
realized in the presence within both unit cells of a site, «enclosing»
a molecule of arbitrary configuration. For the case under investiga-
tion these sites are depicted in Fig. 12. The R-molecule, symmetry
related with S-molecule in the rac-9 crystal unit cell (Fig. 12b),
occupies just the same position as one of the symmetry indepen-
dent S-molecules occupies in the unit cell of (S)-9 crystal
(Fig. 12a). In this case, all existing in both crystals metric relations
remain virtually unchanged.
In the case of chiral compounds, the situation like this is typical
for solid solutions [18]. It seems that complex 9 really belongs to
the rare class of continuous solid solutions. We could add two
other arguments. Firstly, both (S)-9 and rac-9 have very similar
melting temperatures, 118–119 °C and 117–119 °C. Secondly, 3-
(4-methoxyphenoxy)-propane-1,2-diol, synthetic precursor of
crowns 3, forms an ideal continuous solid solution of enantiomers
in full concentration region [19].
References
[1] J.W. Steed, J.L. Atwood, Supramolecular Chemistry, second ed., Wiley, 2009.
[2] (a) J.F. Stoddart, Top. Stereochem. 17 (1988) 207;
(b) M.-Z. Gao, Y.-O. Yang, Z.-L. Xu, Chin. J. Org. Chem. 21 (2001) 477;
(c) M.H. Hyun, J. Sep. Sci. 26 (2003) 242;
(d) M. Lämmerhofer, J. Chromatogr. A 1217 (2010) 814.
[3] (a) G.W. Gokel, O.F. Schall, Lariat ethers, in: G.W. Gokel (Ed.), Comprehensive
Supramolecular Chemistry, Pergamon, New York, 1996, p. 97;
(b) A.H.M. Elwahy, A.A. Abbas, J. Heterocycl. Chem. 45 (2008) 1;
(c) A.A. Abbas, A.H.M. Elwahy, J. Heterocycl. Chem. 46 (2009) 1035.
[4] M. Muraoka, A. Ueda, W. Zhang, T. Kida, Y. Nakatsuji, I. Ikeda, N. Kanehisa, Y.
Kai, Tetrahedron Lett. 39 (1998) 9493.
[5] G.W. Gokel, D.M. Dishong, C.J. Diamond, Chem. Commun. (1980) 1053.
[6] Z.A. Bredikhina, V.G. Novikova, D.V. Zakharychev, A.A. Bredikhin, Tetrahedron:
Asymmetry 17 (2006) 3015.
[7] Z.A. Bredikhina, R.M. Eliseenkova, R.R. Fayzullin, V.G. Novikova, S.V.
Kharlamov, D.R. Sharafutdinova, Sh.K. Latypov, A.A. Bredikhin, ARKIVOC (x)
(2011) 16.
[8] A.A. Bredikhin, Z.A. Bredikhina, V.G. Novikova, A.V. Pashagin, D.V. Zakharychev,
A.T. Gubaidullin, Chirality 20 (2008) 1092.
[9] G.M. Sheldrick, SHELXS 97 Program for Solution of Crystal Structure, University
of Goettingen, Germany, 1997.
[10] G.M. Sheldrick, SHELXL97
a Computer Program for Crystal Structure
Determination, University of Gottingen, 1997.
[11] APEX2 (Version 2.1), SAINTPlus. Data Reduction and Correction Program
(Version 7.31A), Bruker Advanced X-ray Solutions, Bruker AXS Inc., Madison,
Wisconsin, USA, 2006.
[12] (a) H.D. Flack, Acta Crystallogr. A39 (1983) 876;
(b) H.D. Flack, G. Bernardinelli, J. Appl. Crystallogr. 33 (2000) 1143.
[13] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.
4. Conclusion
[14] A.L. Spek, J. Appl. Crystallogr. 36 (2003) 7.
[15] C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M.
Towler, J. van de Streek, J. Appl. Crystallogr. 39 (2006) 453.
The single crystal X-ray diffraction investigations tell us that
within the family of 15-crowns-5 possessing metoxyphenoxym-
ethyl (–CH2O–C6H4–OMe) side arms only ortho-derivative
2
˘
[16] N. Dogan, S. Özbey, M. Karakaplan, T. Aral, J. Chem. Crystallogr. 38 (2008) 943.
[17] M. Walker, E. Pohl, R. Herbst-Irmer, M. Gerlitz, J. Rohr, G.M. Sheldrick, Acta
Crystallogr. B55 (1999) 607.
demonstrates the assistance of lateral fragment in cation complex-
ation (lariat effect) in solid state. No one oxygen atom of para-
substituted side arm in crown 3 takes part in cation encapsulation
in the solid phase. The effects were demonstrated for both homo-
chiral and racemic samples. The crystals of racemic and enantio-
[18] (a) B. Chion, J. Lajzerowicz, D. Bordeaux, A. Collet, J. Jacques, J. Phys. Chem. 82
(1978) 2682;
(b) F.G. Voght, R.C.B. Copley, R.L. Mueller, G.P. Spoors, T.N. Cacchio, R.A.
Carlton, L.M. Katrincic, J.M. Kennady, S. Parsons, O.V. Chetina, Cryst. Growth
Des. 10 (2010) 2713;
(c) H. Lopez de Diego, A.D. Bond, R.J. Dancer, Chirality 23 (2011) 408;
(d) A.A. Bredikhin, Z.A. Bredikhina, D.V. Zakharychev, A.T. Gubaidullin, R.R.
Fayzullin, CrystEngComm. 14 (2012) 648.
pure ‘‘ortho-crowns’’
2
complexes with NaClO4 differ
substantially from one another in packing characteristics. At the
same time racemic and enantiopure complexes of ‘‘para-crowns’’
3 are almost isostructural. We believe that these chiral complexes
belong to the rare class of continuous solid solutions of
enantiomers.
[19] A.A. Bredikhin, Z.A. Bredikhina, D.V. Zakharychev, Mendeleev Commun. 22
(2012) 171.