reagents have been investigated for the epoxidation of styrenes
including chiral porphyrin complexes,4 chiral salen complexes,5
chiral oxaziridines, and oxaziridinium salts.6 Although signifi-
cant progress has been made in this area, the development of a
potentially useful epoxidation method for styrenes has been
elusive.
Effective Asymmetric Epoxidation of Styrenes by
Chiral Dioxirane
David Goeddel, Lianhe Shu, Yi Yuan, O. Andrea Wong,
Bin Wang, and Yian Shi*
Department of Chemistry, Colorado State UniVersity,
Although chiral dioxiranes are effective for asymmetric
epoxidation of trans-, trisubstituted, and certain cis-alkenes,7
styrenes have been challenging substrates.8 During our earlier
studies, we found that fructose-derived ketone 1 (Scheme 1), a
very effective catalyst for trans- and trisubstituted alkenes, gave
only 24% enantiomeric excess (ee) for styrene.9 Encouragingly
high ee’s (74-85%) were subsequently obtained with ketone
2.10 Our recent studies on the conformational and electronic
effects of ketone catalysts on epoxidation have shown that
ketone 3, a carbocyclic analogue of 2, gives high ee for styrenes
(89-93% ee).11 Although ketone 3 is mechanistically informa-
tive, its lengthy synthesis precludes its practical use. Very
recently, we have shown that N-aryl-substituted oxazolidinone
ketone 4a (Ar ) p-MePh) (Scheme 1), which is readily prepared
from glucose and p-toluidine (Scheme 2), provides a potentially
practical catalyst for epoxidation.12 Herein, we wish to report
our studies on the epoxidation of styrenes with this class of
ketones.
Our studies showed that the N-substituents of the ketones
have significant effects on the enantioselectivity of styrene
epoxidation, with the ee varying from 55 to 87% using 15 mol
% ketone catalyst in DME (Scheme 3, Table 1). Generally
speaking, aniline substitution with hydrocarbons consistently
shows higher ee than substitution with ethers or halogens. A
combination of high enantioselectivity and low cost of aniline
starting materials (p-toluidine and 4-ethylaniline) makes 4a and
4b good catalyst choices among all of these ketones. The ee
obtained with ketone 4b for styrene encouraged us to extend
the epoxidation to other styrenes. As shown in Table 2, up to
92% ee was obtained with the observed enantioselectivity being
dependent on the phenyl group substituents of the olefins.
Fort Collins, Colorado 80523
ReceiVed September 27, 2005
High enantioselectivity (80-92% enantiomeric excess (ee))
has been obtained for the epoxidation of various styrenes
using an easily prepared ketone (4) catalyst.
Chiral styrene oxides are extremely useful and can be
prepared by a number of methods, such as asymmetric reduction
of R-halo acetophenones,1 asymmetric dihydroxylation of
styrenes,2 and kinetic resolution of racemic epoxides.3 The
asymmetric epoxidation of styrenes has also received a con-
siderable amount of interest.4-6 Various chiral catalysts and
* To whom correspondence should be addressed. Phone: 970-491-7424.
Fax: 970-491-1801.
(1) (a) Corey, E. J.; Shibata, S.; Bakshi, R. K. J. Org. Chem. 1988, 53,
2861. (b) Hamada, T.; Torii, T.; Izawa, K.; Noyori, R.; Ikariya, T. Org.
Lett. 2002, 4, 4373 and references therein.
(2) (a) Kolb, H. C.; Sharpless, K. B. Tetrahedron 1992, 48, 10515. (b)
Weissman, S. A.; Rossen, K.; Reider, P. J. Org. Lett. 2001, 3, 2513.
(3) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science
1997, 277, 936.
(6) For examples, see: (a) Davis, F. A.; Harakal, M. E.; Awad, S. B. J.
Am. Chem. Soc. 1983, 105, 3123. (b) Davis, F. A.; Chattopadhyay, S.
Tetrahedron Lett. 1986, 27, 5079. (c) Aggarwal, V. K.; Wang, M. F. Chem.
Commun. 1996, 191. (d) Bohe, L.; Lusinchi, M.; Lusinchi, X. Tetrahedron
1999, 55, 141. (e) Page, P. C. B.; Buckley, B. R.; Blacker, A. J. Org. Lett.
2004, 6, 1543.
(7) For reviews, see: (a) Denmark, S. E.; Wu, Z. Synlett 1999, 847. (b)
Shi, Y. Acc. Chem. Res. 2004, 37, 488. (c) Yang, D. Acc. Chem. Res. 2004,
37, 497.
(8) For examples, see: (a) Yang, D.; Yip, Y.-C.; Tang, M.-W.; Wong,
M.-K.; Zheng, J.-H.; Cheung, K.-K. J. Am. Chem. Soc. 1996, 118, 491. (b)
Wang, Z.-X.; Shi, Y. J. Org. Chem. 1997, 62, 8622. (c) Armstrong, A.;
Hayter, B. R. Chem. Commun. 1998, 621. (d) Denmark, S. E.; Matsuhashi,
H. J. Org. Chem. 2002, 67, 3479. (e) Chan, W.-K.; Yu, W.-Y.; Che, C.-
M.; Wong, M.-K. J. Org. Chem. 2003, 68, 6576.
(4) For examples, see: (a) Groves, J. T.; Myers, R. S. J. Am. Chem.
Soc. 1983, 105, 5791. (b) O’Malley, S.; Kodadek, T. J. Am. Chem. Soc.
1989, 111, 9116. (c) Halterman, R. L.; Jan, S.-T. J. Org. Chem. 1991, 56,
5253. (d) Naruta, Y.; Tani, F.; Ishihara, N.; Maruyama, K. J. Am. Chem.
Soc. 1991, 113, 6865. (e) Konishi, K.; Oda, K.-I.; Nishida, T.; Aida, T.;
Inoue, S. J. Am. Chem. Soc. 1992, 114, 1313. (f) Naruta, Y.; Ishihara, N.;
Tani, F.; Maruyama, K. Bull. Chem. Soc. Jpn. 1993, 66, 158. (g) Collman,
J. P.; Lee, V. J.; Kellen-Yuen, C. J.; Zhang, X.; Ibers, J. A.; Brauman, J.
I. J. Am. Chem. Soc. 1995, 117, 692. (h) Berkessel, A.; Frauenkron, M. J.
Chem. Soc., Perkin Trans. 1 1997, 2265. (i) Collman, J. P.; Wang, Z.;
Straumanis, A.; Quelquejeu, M.; Rose, E. J. Am. Chem. Soc. 1999, 121,
460. (j) Zhang, R.; Yu, W.-Y.; Lai, T.-S.; Che, C.-M. Chem. Commun.
1999, 409. (k) Gross, Z.; Ini, S. Org. Lett. 1999, 1, 2077. (l) Zhang, R.;
Yu, W.-Y.; Wong, K.-Y.; Che, C.-M. J. Org. Chem. 2001, 66, 8145. (m)
Rose, E.; Ren, Q.-Z.; Andrioletti, B. Chem.-Eur. J. 2004, 10, 224. (n)
Rose, E.; Andrioletti, B.; Zrig, S.; Quelquejeu-Etheve, M. Chem. Soc. ReV.
2005, 34, 573.
(9) Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am. Chem.
Soc. 1997, 119, 11224.
(10) Tian, H.; She, X.; Xu, J.; Shi, Y. Org. Lett. 2001, 3, 1929.
(11) Hickey, M.; Goeddel, D.; Crane, Z.; Shi, Y. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 5794.
(5) For examples, see: (a) Zhang, W.; Loebach, J. L.; Wilson, S. R.;
Jacobsen, E. N. J. Am. Chem. Soc. 1990, 112, 2801. (b) O’Connor, K. J.;
Wey, S.-J.; Burrows, C. J. Tetrahedron Lett. 1992, 33, 1001. (c) Palucki,
M.; Pospisil, P. J.; Zhang, W.; Jacobsen, E. N. J. Am. Chem. Soc. 1994,
116, 9333. (d) Palucki, M.; McCormick, G.-J.; Jacobsen, E. N. Tetrahedron
Lett. 1995, 36, 5457. (e) Hashihayata, T.; Ito, Y.; Katsuki, T. Tetrahedron
1997, 53, 9541. (f) Takeda, T.; Irie, R.; Shinoda, Y.; Katsuki, T. Synlett
1999, 1157. (g) Kim, G.-J.; Shin, J.-H. Tetrahedron Lett. 1999, 40, 6827.
(12) (a) Shu, L.; Wang, P.; Gan, Y.; Shi, Y. Org. Lett. 2003, 5, 293. (b)
Shu, L.; Shi, Y. Tetrahedron Lett. 2004, 45, 8115.
(13) (a) Archelas, A.; Furstoss, R. J. Org. Chem. 1999, 64, 6112. (b)
Doussot, J.; Guy, A.; Siaugue, J.-M.; Ferroud, C.; Guieres, A. F. Chirality
1999, 11, 541. (c) Pedragosa-Moreau, S.; Morisseau, C.; Zylber, J.; Archelas,
A.; Baratti, J.; Furstoss, R. J. Org. Chem. 1996, 61, 7402. (d) Moussou, P.;
Archelas, A.; Baratti, J.; Furstoss, R. J. Org. Chem. 1998, 63, 3532. (e)
Solladie-Cavallo, A.; Diep-Vohuule, A. J. Org. Chem. 1995, 60, 3494.
10.1021/jo0520285 CCC: $33.50 © 2006 American Chemical Society
Published on Web 01/24/2006
J. Org. Chem. 2006, 71, 1715-1717
1715