rendered somewhat more sensitive than that of the trans-
glycosidic bond. Captivated by this challenge, our group has
found considerable success in employing the torsionally and
electronically disarming 4,6-O-benzylidene protecting group.12
In our researches, this group has been used to synthesize a
variety of â-D-mannopyranosides, including the (1f2)-,
(1f4)-, and alternating (1f3)-, (1f4)-mannans.13 However,
even with this technology in hand, the challenge of the cis-
glycosidic bond is considerably magnified in the biologically
important rhamnopyranosides, which lack the functional arm
for incorporation of a benzylidene-type directing effect.
In general, strategies for synthesis of polysaccharides
containing deoxy-sugars proceed via prior synthesis of an
appropriately protected deoxy subunit, followed by extensive
optimization of conditions for stereoselective glycosidation;
recent efforts in this vein have been frustrated by low
selectivities.14 However, the reliability of the benzylidene-
mediated mannosylations combined with their close structural
relationship to the â-rhamnosides suggest inverting such a
paradigm: synthesis of â-mannosyl linkages followed by a
deoxygenation to provide the otherwise demanding subunits.
This strategy is particularly attractive in the case of the â-D-
rhamnopyranosides, where the starting material, D-mannose,
is easily available in bulk. Thus, we have recently developed
a protecting group that readily combines the stereoselectivity
of a benzylidene acetal with a latent radical fragmentation
pathway, providing a high-yielding deoxygenation in the last
stage of oligosaccharide synthesis.15 Herein, we demonstrate
the broadest capabilities of this method to date, with a concise
total synthesis of a tetrasaccharide fragment from the (1f3)-
rhamnan of E. hermanii (ATCC 33651) via a one-pot
quadruple radical fragmentation. To the best of our knowl-
edge, this is the first synthesis of a â-rhamnan (of either the
D- or L-modification) and an unique example of such a
multiple radical deoxygenation.16
Benzylidene-protected hexopyranosides are known to
undergo deoxygenation at C-6 via the NBS-mediated
Hanessian-Hullar reaction.17 However, the initiation step
of this reaction, radical abstraction of the benzylidene proton,
has proven indiscriminate in consort with the standard host
of nonparticipating protecting groups necessary for oligo-
saccharide synthesis.18 Similar incompatibilities are observed
with Roberts’ thiol-catalyzed benzylidene fragmentation.19
Whereas the Hanessian-Hullar reaction likely occurs via a
radical/polar crossover mechanism, Roberts’ sequence pro-
ceeds via a purely radical mechanism.20 This mechanism
favors fragmentation to a primary radical at C-6 due to a
conformationally less-strained transition state arising from
planarization at the incipient C-6 radical.21
To avoid the problematic hydrogen atom abstraction step,
we introduced the 4,6-O-[R-(2-(2-iodophenyl)-ethylthio-
carbonyl)-benzylidene] group.22 This group enabled the
synthesis of the tetrasaccharide subunit from E. hermanii
(ATCC 33650 and 33652).23 However, the limited functional
group compatibility of a key transesterification required to
introduce the group minimized the overall scope. In subse-
quent work, we have identified a second-generation 4,6-O-
[1-cyano-2-(2-iodophenyl)-ethylidene] acetal as a surrogate
for the benzylidene fragmentation that is easily prepared, is
easily installed, and is orthogonal to many protecting group
manipulations.
The mechanism for the cyano group transfer/fragmentation
(Scheme 1) is based upon chemistry first articulated by
Scheme 1. Radical Fragmentation Mechanism
(11) (a) Barresi, F.; Hindsgaul, O. In Modern Methods in Carbohydrate
Synthesis; Khan, S. H., O’Neill, R. A., Eds.; Harwood Academic Publishers:
Amsterdam, 1996; pp 251. (b) Demchenko, A. V. Synlett 2003, 1225. (c)
Pozsgay, V. In Carbohydrates in Chemistry and Biology; Ernst, B., Hart,
G. W., Sinay, P., Eds.; Wiley-VCH: Weinheim, Germany, 2000; Vol. 1,
pp 319. (d) Gridley, J. J.; Osborn, H. M. I. J. Chem. Soc., Perkin Trans. 1
2000, 1471.
(12) (a) Crich, D.; Li, H. J. Org. Chem. 2002, 67, 4640. (b) Crich, D.;
Dai, Z. Tetrahedron 1999, 55, 1569. (c) Crich, D.; Barba, G. R. Tetrahedron
Lett. 1998, 39, 9339. (d) Crich, D.; de la Mora, M. A.; Cruz, R. Tetrahedron
2002, 58, 35. (e) Crich, D.; Banerjee, A. Org. Lett. 2005, 7, 1395. (f) Crich,
D.; Dudkin, V. J. Am. Chem. Soc. 2002, 124, 2263. (g) Dudkin, V. Y.;
Crich, D. Tetrahedron Lett. 2003, 44, 1787. (h) Dudkin, V. Y.; Miller, J.
S.; Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, 736. (i) Miller, J. S.;
Dudkin, V. Y.; Lyon, G. J.; Muir, T. W.; Danishefsky, S. J. Angew. Chem.,
Int. Ed. 2003, 42, 431. (j) Nicolaou, K. C.; Mitchell, H. J.; Rodriguez, R.
M.; Fylaktakidou, K. C.; Suzuki, H.; Conley, S. R. Chem.-Eur. J. 2000,
6, 3149. (k) Kim, K. S.; Kang, S. S.; Seo, Y. S.; Kim, H. J.; Lee, Y. J.;
Jeong, K.-S. Synlett 2003, 1311. (l) Wu, X.; Schmidt, R. R. J. Org. Chem.
2004, 69, 1853. (m) Kwon, Y. T.; Lee, Y. J.; Lee, K.; Kim, K. S. Org.
Lett. 2004, 6, 3901. (n) Tanaka, S.-I.; Takashina, M.; Tokimoto, H.;
Fujimoto, Y.; Tanaka, K.; Fukase, K. Synlett 2005, 2325.
Beckwith and later expanded by Rychnovsky.24 As is
frequently the case with radical reactions propagated by tin
(13) (a) Crich, D.; Banerjee, A.; Yao, Q. J. Am. Chem. Soc. 2004, 126,
14930. (b) Crich, D.; Li, W.; Li, H. J. Am. Chem. Soc. 2004, 126, 15081.
(c) Crich, D.; Li, H.; Yao, Q.; Wink, D. J.; Sommer, R. D.; Rheingold, A.
L. J. Am. Chem. Soc. 2001, 123, 5826.
(14) Bedini, E.; Carabellese, A.; Barone, G.; Parrilli, M. J. Org. Chem.
2005, 70, 8064.
(15) Crich, D.; Bowers, A. A. J. Org. Chem. 2006, 71, 3452.
(16) For a previous example of a multiple radical fragmentation in
oligosaccharide synthesis, see: Crich, D.; Hermann, F. Tetrahedron Lett.
1993, 34, 3385.
(17) (a) Hanessian, S.; Plessas, N. R. J. Org. Chem. 1969, 34, 1035. (b)
Hanessian, S.; Plessas, N. R. J. Org. Chem. 1969, 34, 1045. (c) Hanessian,
S.; Plessas, N. R. J. Org. Chem. 1969, 34, 1053. (d) Chana, J. S.; Collins,
P. M.; Farnia, F.; Peacock, D. J. J. Chem. Soc., Chem. Commun. 1988, 94.
(e) Binkley, R. W.; Goewey, G. S.; Johnston, J. C. J. Org. Chem. 1984,
49, 992. (f) Hanessian, S. Org. Synth. 1987, 65, 243. (g) Hullar, T. L.;
Siskin, S. B. J. Org. Chem. 1970, 35, 225.
(18) Liotta, L. J.; Dombi, K. L.; Kelley, S. A.; Targontsidis, S.; Morin,
A. M. Tetrahedron Lett. 1997, 38, 7833.
4328
Org. Lett., Vol. 8, No. 19, 2006