C O M M U N I C A T I O N S
In summary, we prepared P,S-containing hybrid calixphyrins for
the first time. The σ3-P,N2,S-hybrids were successfully converted
to a visible, macrocyclic palladium complex, which was found to
catalyze the Heck reaction with high efficiency. It should be noted
here that the coordination number and the oxidation state at the
metal center are controllable by changing the size and components
of the macrocyclic platform. We anticipate that these characteristics
of P-containing hybrid calixphyrins will be of great benefit for
designing new classes of transition metal catalysts.
Acknowledgment. This work was partially supported by Grants-
in-Aid (No. 17350018 and 21st Century COE on Kyoto University
Alliance for Chemistry) from the Ministry of Education, Culture,
Sports, Science and Technology of Japan. We thank Dr. Yoshihide
Nakao for his assistance with DFT calculations.
Figure 2. ORTEP diagram of 7 (30% probability ellipsoids). Hydrogen
atoms and the solvent molecules are omitted for clarity. Selected bond
lengths (Å) and angles (deg): Pd-P, 2.2135(8); Pd-N1, 2.079(2); Pd-
N2, 2.066(2); Pd-S, 2.2667(8); P-Pd-N1, 95.21(7); P-Pd-N2, 85.75-
(7); S-Pd-N1, 92.93(6); S-Pd-N2, 85.77(7).
Supporting Information Available: Experimental details, CIF files
for 5 and 7, and DFT computational results. This material is available
four heteroatoms to adopt a distorted square planar geometry. The
N-S-N unit in 7 is not on the same plane, and the edge-to-edge
distances between two meso carbons differ from those in 5 (Figure
S1). The phosphole ring leans toward the inside for binding the
palladium, and the sulfur atom is deviated from the thiophene ring
with a dihedral angle of 20°. The Pd-N bond lengths of 2.066-
(2)-2.079(2) Å are longer than typical values (2.012 ( 0.018 Å)
observed for Pd-coordinated porphyrin-type macrocycles.8
The observed carbon-carbon bond lengths of the N-S-N unit
in 7 are indicative of a noticeable contribution by the canonical
structure 7′, in which the formal oxidation state of Pd is considered
to be +2 (Figure S2). This was confirmed by density functional
theory calculations on model compounds (for details, see Supporting
Information). If the palladium in 7 is deviated from the N-S-N
plane by flipping motion, however, a coordinatively unsaturated,
highly reactive palladium center would be generated. This hypoth-
esis was verified by the variable-temperature NMR measurements
of 7. When heated at 125-135 °C in DMSO-d6 and DMA-d9, the
thiophene- and pyrrole-derived 1H peaks and the phosphole-31P peak
were considerably broadened as compared to those observed at 25
°C (Figure S3). This result indicates that the macrocyclic framework
in 7 becomes much more flexible at elevated temperatures, which
allows coordinative interaction between the solvents and the face-
up palladium center.
References
(1) (a) McAuliffe, C. A. In ComprehensiVe Coordination Chemistry; Wilkin-
son, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon: Oxford, 1987;
Vol. 2, pp 995-1004. (b) Stelzer, O.; Langhans, K.-P. In The Chemistry
of Organophosphorus Compounds; Hartley, F. R., Ed.; Wiley: Chichester,
U.K., 1990; Vol. 1, pp 226-233. (c) Caminade, A.-M.; Majoral, J. P.
Chem. ReV. 1994, 94, 1183. (d) Dilworth, J. R.; Wheatley, N. Coord.
Chem. ReV. 2000, 199, 89. (e) Mathey, F. Acc. Chem. Res. 2004, 37,
954.
(2) For example, see: (a) Bonomo, L.; Toraman, G.; Solari, E.; Scopelliti,
R.; Floriani, C. Organometallics 1999, 18, 5198. (b) Kra´l, V.; Sessler, J.
L.; Zimmerman, R. S.; Seidel, D.; Lynch, V.; Andrioletti, B. Angew.
Chem., Int. Ed. 2000, 39, 1055. (c) Bucher, C.; Seidel, D.; Lynch, V.;
Kra´l, V.; Sessler, J. L. Org. Lett. 2000, 2, 3103. (d) Senge, M. O.; Kalisch,
W. W.; Bischoff, I. Chem.sEur. J. 2000, 6, 2721. (e) Bucher, C.;
Zimmerman, R. S.; Lynch, V.; Kra´l, V.; Sessler, J. L. J. Am. Chem. Soc.
2001, 123, 2099; Correction: 12744. (f) Harmjanz, M.; Gill, H. S.; Scott,
M. J. J. Org. Chem. 2001, 66, 5374. (g) Sessler, J. L.; Zimmerman, R.
S.; Bucher, C.; Kra´l, V.; Andrioletti, B. Pure Appl. Chem. 2001, 73, 1041.
(h) Dolensky, B.; Kroul´ık, J.; Kra´l, V.; Sessler, J. L.; Dvora´kova´, H.;
Bour, P.; Berna´tkova´, M.; Bucher, C.; Lynch, V. J. Am. Chem. Soc. 2004,
126, 13714.
(3) The chemistry of phosphole-containing macrocycles has been reported
by Mathey and co-workers. (a) Mathey, F.; Mercier, F.; Nief, F.; Fischer,
J.; Mitschler, A. J. Am. Chem. Soc. 1982, 104, 2077. (b) Bevierre, M.-
O.; Mercier, F.; Ricard, L.; Mathey, F. Angew. Chem. Int. Ed. 1990, 29,
655. (c) Laporte, F.; Mercier, F.; Ricard, L.; Mathey, F. J. Am. Chem.
Soc. 1994, 116, 3306. (d) Deschamps, E.; Ricard, L.; Mathey, F. J. Chem.
Soc., Chem. Commun. 1995, 1561. (e) Mercier, F.; Laporte, F.; Ricard,
L.; Mathey, F.; Schro¨der, M.; Regitz, M. Angew. Chem., Int. Ed. Engl.
1997, 36, 2364.
(4) (a) Matano, Y.; Nakabuchi, T.; Miyajima, T.; Imahori, H. Organometallics
2006, 25, 3105. (b) Matano, Y.; Miyajima, T.; Nakabuchi, T.; Matsutani,
Y.; Imahori, H. J. Org. Chem. 2006, 71, 5792.
Encouraged by the above observations, we examined the catalytic
activity of 7 for the Heck reactions of bromoarenes with n-butyl
acrylate in DMA (eq 1).
(5) Ulman, A.; Manassen, J. J. Am. Chem. Soc. 1975, 97, 6540.
(6) C92H82Cl4N4P2S2, P21/n, a ) 26.188(5) Å, b ) 10.1923(17) Å, c ) 31.765-
(6) Å, â ) 112.7790(5)°, V ) 7817(2) Å3, Z ) 4, Dc ) 1.284 g cm-3
,
17276 obsd, 947 variables, Rw ) 0.1523, R ) 0.0903 (I>2.00σ(I)), GOF
) 1.035.
(7) C46H41Cl2N2PPdS, C2/c, a ) 22.055(5) Å, b ) 12.648(3) Å, c ) 27.807-
(7) Å, â ) 98.3576(11)°, V ) 7674(3) Å3, Z ) 8, Dc ) 1.492 g cm-3,
8751 obsd, 479 variables, Rw ) 0.1276, R ) 0.0496 (I > 2.00σ(I)), GOF
) 1.116.
(8) (a) Liu, D.; Ferrence, G. M.; Lash, T. D. J. Org. Chem. 2004, 69, 6079.
(b) Bruno, I. J.; Cole, J. C.; Edgington, P. R,; Kessler, M.; Macrae, C. F.;
McCabe, P.; Pearson, J.; Taylor, R. Acta Crystallogr., Sect. B: Struct.
Sci. 2002, B58, 389.
(9) The Mathey’s Pd-tetraphosphole macrocycle catalyzes the Heck reaction
of bromobenzene with n-butyl acrylate with a TON of 89 after 48 h under
the same conditions. See ref 3e.
As expected, the reactions proceeded at 135 °C to afford the Heck
products with turnover numbers of 9700-12300.9 Although the
literature contains more active Heck catalysts,10 the present results
demonstrate that the P-containing hybrid calixphyrins constitute a
useful addition to the existing efficient phosphine ligands. It is
interesting to note that the catalytic activity of 7 is visually
detectable through its characteristic reddish purple color in solution.
Such a property is of practical importance in monitoring the activity
of the catalyst without isolating it.11
(10) For example, see: (a) Herrmann, W. A.; Brossmer, C.; O¨ fele, K.;
Reisinger, C.-P.; Priermeier, T.; Beller, M.; Fischer, H. Angew. Chem.,
Int. Ed. 1995, 34, 1844. (b) Ohff, M.; Ohff, A.; Boom, M. E. v. d.;
Milstein, D. J. Am. Chem. Soc. 1997, 119, 11687. (c) Shaw, B. L.; Perera,
S. D.; Staley, E. A. Chem. Commun. 1998, 1361. (d) Albisson, D. A.;
Bedford, R. B.; Scully, P. N. Tetrahedron Lett. 1998, 39, 9793. (e)
Beletskaya, I. P.; Cheprakov, A. V. Chem. ReV. 2000, 100, 3009 and
references therein.
(11) Complex 7: UV/vis (CH2Cl2) λmax 524 nm (ꢀ ) 14000).
JA0640039
9
J. AM. CHEM. SOC. VOL. 128, NO. 36, 2006 11761