Scheme 2. Synthesis of Labeled Minodronate Analogue 4
Scheme 3. Formation of P-C-P-C-P Backbones
to minodronate (also known as YM529), a member of the
third-generation of biologically active bisphosphonates.11
Finally, we have undertaken the preparation of P-C-P-
C-P backbones using the n-Bu3P mediated R-P-addition
reaction. The reaction of H-phosphonylphosphonate 2d with
alkynyl phosphonates 1a and 1d proceeded smoothly to
afford, after chromatographic purification, the corresponding
vinylic triphosphane trioxides P(O)-C-P(O)-C-P(O) 3n
and 3o as pure Z isomers in good yields. Double R-P-addition
reaction of diethyl phosphite 2a was also achieved on bis-
alkynyl phosphine oxide 1i. The reaction conducted to the
expected product 3p as pure Z,Z isomer but required the use
of a less hindered phosphine (Et3P) and drastic conditions
which conducted to poor yield (Scheme 3).
of the nature of the two phosphane oxide groups, which
constitutes an undeniable advantage compared to classical
methods.12 An interesting possibility would be the synthesis
and biological evaluation of the phosphinates analogues of
the 1,1-bis-phosphonates currently used as therapeutic agents.
This structural modification should indeed decrease the
highly charged nature of these drugs and therefore increase
their uptake. From an organic synthesis point of view, the
present methodology offers a new route to compounds
bearing P(O)-C-P(O) moiety which are common precursors
of vinyl phosphane oxides13 and of ligands for catalysis.14
The presented reaction can also be successfully used for
the straightforward synthesis of compounds bearing P-C-
P-C-P backbones. Further investigations to prepare various
biochemically stable triphosphate analogues using this
methodology are currently underway.
In conclusion, we have developed a simple and practical
method for the preparation of 2-aryl-1-vinyl-1,1-diphosphane
dioxide derivatives. These products can be easily converted
into 1,1-bis-phosphonates which are important biologically
active drugs. The reported methodology allows the control
Acknowledgment. This work was supported by the
“Nuclear Toxicology” program of the CEA for which grateful
acknowledgment is made. We also thank E. Zekri and D.
Buisson (CEA) for experimental assistance with MS and LC/
MS measurements.
(8) Widler, L.; Jaeggi, K. A.; Glatt, M. Muller, K.; Bachmann, R.;
Bisping, M.; Born, A. R.; Corseti, R.; Guiglia, G.; Jeker, H.; Klein, R.;
Ramseier, U.; Schmid, J.; Schreiber, G.; Seltenmeyer, Y.; Green, J. R. J.
Med. Chem. 2002, 45, 3721-3738.
(9) Russel, R. G. G.; Rogers, M. J. Br. J. Rheumatol. 1997, 36 (Suppl.
1), 10-14.
(10) (a) Pecherstorfer, M.; Herrmann, Z.; Body, J.-J.; Manegold, C.;
Degardin, M.; Clemens, M. R.; Thurlimann, B.; Tubiana-Hulin, M.;
Steinhauer, E. U. J. Clin. Oncol. 1996, 14, 268-276. (b) Clezardin, P.;
Fournier, P.; Boissier, S.; Peyruchaud, O. Curr. Med. Chem. 2003, 10, 173-
180. (c) Guenin, E.; Ledoux, D.; Oudar, O.; Lecouvet, M.; Kraemer, M.
Anticancer Res. 2005, 25, 1139-1146. (d) Wilheim, M.; Kunzman, V.;
Eckstein, S.; Reimer, P.; Weissinger, F.; Ruediger, T.; Tony, H. P. Blood
2003, 102, 200-206.
Supporting Information Available: Experimental pro-
cedures for synthesis and full characterization for compounds;
1H NMR and 31P NMR spectra of products 3a-p and 4.
This material is available free of charge via the Internet at
OL061589V
(11) (a)Yuasa, Y.; Nogawa, M.; Kimura, S.; Yokota, A.; Sato, K.;
Segawa, H.; Kuroda, J.; Maekawa, T. Clin. Cancer Res. 2005, 11, 853-
859. (b) Cheng, F.; Oldfield, E. J. Med. Chem. 2004, 47, 5149-5158. (c)
Sanders, J. M.; Ghosh, S.; Chan, J. M. W.; Meints, G.; Wang, H.; Raker,
A. M.; Song, Y.; Colantino, A.; Burzynska, A.; Kafarski, P.; Morita, C. T.;
Oldfield, E. J. Med. Chem. 2004, 47, 375-384. (d) Szabo, C. M.; Martin,
M. B.; Oldfield, E. J. Med. Chem. 2002, 45, 2894-2903. (e) Sanders, J.
M.; Ghosh, S.; Chan, J. M. W.; Meints, G.; Wang, H.; Raker, A. M.; Song,
Y.; Colantino, A.; Burzynska, A.; Kafarski, P.; Morita, C. T.; Oldfield, E.
J. Med. Chem. 2004, 47, 375-384. (f) Ling, Y.; Sahota, G.; Odeh, S.; Chan,
J. M. W.; Araujo, F. G.; Moreno, S. N. J.; Oldfield, E. J. Med. Chem.
2005, 48, 3130-3140. (g) Kotsikorou, E.; Oldfield, E. J. Med. Chem. 2003,
46, 2932-2944.
(12) (a) Mallard, I.; Benech, J. M.; Lecouvey, M.; Leroux, Y. Phosphorus
Sulfur Silicon 2000, 162, 15-23. (b) Gouault-Bironneau, S.; Depre`le S.;
Sutor, A.; Montchamp, J.-P. Org. Lett. 2005, 7, 5909-5012. (c) Lecouvey,
M.; Mallard, I.; Bailly, T.; Burgada, R.; Leroux, Y. Tetrahedron Lett. 2001,
42, 8475-8478. (d) Guenin, E.; Degache, E.; Liquier, J.; Lecouvey, M.
Eur. J. Org. Chem. 2004, 2983-2987.
(13) See, for example: (a) Nagaoka, Y.; El-Koussi, N.; Uesato, S.;
Tomioka, K. Tetrahedron Lett. 2002, 43, 4355-4360. (b) Nagaoka, Y.;
Inoue, H.; El-Koussi, N.; Tomioka, K. Chem. Commun. 2002, 2, 122-
123.
(14) For example, benzylidenebisphosphine oxide 3e is easily reduced
by LAH to the corresponding saturated bisphosphine, data not shown.
Org. Lett., Vol. 8, No. 19, 2006
4285