of the ready states (Ni-B or Ni-SIr) and the unready states
(Ni-B0, Ni-‘S’, Ni-A, or Ni-SU) of [NiFe] hydrogenase,6 in
which the ready Ni-B state is easily activated within a few
minutes under a hydrogen atmosphere, whereas the unready
Ni-A state requires longer activation times of up to hours.1
While the protein crystallographic analysis suggested that the
Ni-A state contains m-OOH as the third bridge, the Ni-B0 or
Ni-‘S’ states having a m-SH6 may be important states showing
a reactivity like the unready Ni-A state.1b,7 Considering that
sulfate-reducing bacteria produce a large amount of H2S in
their metabolism, the active site may be converted by H2S into
the Ni-B0 or Ni-‘S’ states having a m-SH, similar to our results
reported here, which show the m-S/m-OH complexes 2a,b and
the m-S/m-H complexes 5a,b quickly react with H2S and are
converted into the m-S/m-SH complexes 4a,b.
1 Recent reviews: (a) W. Lubitzs, M. van Gastel and W. Gartner, in
¨
Metal Ions in Life Sciences, ed. A. Sigel, H. Sigel, R. K. O.
Sigel, John Wiley & Sons, Ltd, New York, 2006, vol. 2,
pp. 279–322; (b) H. Ogata, W. Lubitz and Y. Higuchi, Dalton
Trans., 2009, 7577; (c) P. M. Vignais and B. Billoud, Chem. Rev.,
2007, 107, 4206; (d) J. C. Fontecilla-Camps, A. Volbeda,
C. Cavazza and Y. Nicolet, Chem. Rev., 2007, 107, 4273;
(e) A. L. De Lacey, V. Fernandez, M. Rousset and
´
R. Cammack, Chem. Rev., 2007, 107, 4304; (f) W. Lubitz,
E. Reijerse and M. van Gastel, Chem. Rev., 2007, 107, 4331;
(g) P. E. M. Siegbahn, J. W. Tye and M. B. Hall, Chem. Rev.,
2007, 107, 4414; (h) D. J. Evans and C. J. Pickett, Chem. Soc. Rev.,
2003, 32, 268.
2 (a) S. Ogo, R. Kabe, K. Uehara, B. Kure, T. Nishimura,
S. C. Menon, R. Harada, S. Fukuzumi, Y. Higuchi, T. Ohhara,
T. Tamada and R. Kuroki, Science, 2007, 316, 585; (b) B. Kure,
T. Matsumoto, K. Ichikawa, S. Fukuzumi, Y. Higuchi, T. Yagi
and S. Ogo, Dalton Trans., 2008, 4747; (c) T. Matsumoto, B. Kure
and S. Ogo, Chem. Lett., 2008, 970.
3 (a) Y. Ohki, K. Yasumura, M. Ando, S. Shimokata and
K. Tatsumi, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 3994;
(b) Y. Ohki, M. Sakamoto and K. Tatsumi, J. Am. Chem. Soc.,
2008, 130, 11610; (c) Y. Ohki, K. Yasumura, K. Kuge, S. Tanino,
M. Ando, Z. Li and K. Tatsumi, Proc. Natl. Acad. Sci. U. S. A.,
2008, 105, 7652; (d) S. Tanino, Z. Li, Y. Ohki and K. Tatsumi,
Inorg. Chem., 2009, 48, 2358; (e) Z. Li, Y. Ohki and K. Tatsumi,
J. Am. Chem. Soc., 2005, 127, 8950.
This work was supported by Grant-in-Aid for Scientific
Research on Priority Areas (No. 18GS0207) from Ministry of
Education, Culture, Sports, Science and Technology, Japan.
We are grateful to Prof. Roger E. Cramer for discussions and
careful reading of the manuscript.
Notes and references
4 T. Matsumoto, Y. Nakaya and K. Tatsumi, Organometallics, 2006,
25, 4835.
5 (a) T. Matsumoto, Y. Nakaya and K. Tatsumi, Angew. Chem., Int.
Ed., 2008, 47, 1913; (b) T. Matsumoto, Y. Nakaya, N. Itakura and
K. Tatsumi, J. Am. Chem. Soc., 2008, 130, 2458.
ꢀ
z Crystal data for 5b: C72H66BF24GePRuS; triclinic; P1 (No. 2); a =
12.057(3),
b
=
16.670(4),
c
=
20.047(3) A;
a
=
68.826(12),
b = 70.639(11), g = 79.729(13)1, V = 3536.9(14) A3; Z = 2;
F(000) = 1650; m = 7.955 cmꢀ1; rcalc = 1.534 g cmꢀ3; 29 042
reflections (2y o 54.91); 15 512 unique (Rint = 0.029); R1 = 0.055
(I > 2s(I)), wR2 = 0.1597 (all data), GoF = 1.085. For 6b:
C40H53GePRuS; monoclinic; P21/c (No. 14); a = 16.292(2), b =
9.2011(14), c = 24.751(4) A; b = 91.198(2)1, V = 3709.4(9) A3; Z =
4; F(000) = 1600; m = 13.43 cmꢀ1; rcalc = 1.380 g cmꢀ3; 29 413
reflections (2y o 55.01), 8474 independent (Rint = 0.077); R1 = 0.057
(I > 2s(I)), wR2 = 0.158 (all data), GoF = 0.954. Single crystals were
mounted on a loop using oil (CryoLoop, Paratone-N, HR2-643,
Hampton Laboratories, Inc.). Diffraction data were collected at
ꢀ100 1C under a cold nitrogen stream on a Rigaku AFC8 equipped
with a Saturn 70 CCD area detector, equipped with a graphite
monochromatized MoKa source (l = 0.71070 A). Data were collected
for 720 images with an oscillation range of 0.51, and were integrated
and corrected for absorption using the Rigaku/MSC CrystalClear
program package. The structures were solved by a direct method
(SIR-97), and were refined by full-matrix least squares on F2 using
SHELXL-9714 in the Rigaku/MSC CrystalStructure program package.
Anisotropic refinement was applied to all non-hydrogen atoms. The
hydrogen atom H(1) of 5b was assigned from the Fourier map and
refined isotropically. The other hydrogen atoms were put at the
calculated positions.
6 See ref. 1d for the notation of each state of [NiFe] hydrogenase.
7 (a) Y. Higuchi and T. Yagi, Biochem. Biophys. Res. Commun.,
1999, 255, 295; (b) H. Ogata, S. Hirota, A. Nakahara, H. Komori,
N. Shibata, T. Kato, K. Kano and Y. Higuchi, Structure (London),
2005, 13, 1635.
8 The reaction was monitored by 1H NMR spectra, and the product
ratio was analyzed accordingly.
9 T. Matsumoto, Y. Nakaya and K. Tatsumi, unpublished results.
10 K. M. Baines and W. G. Stibbs, Coord. Chem. Rev., 1995,
145, 157.
11 (a) M. V. Ovchinnikov, X. Wang, A. J. Schultz, I. A. Guzei and
R. J. Angelici, Organometallics, 2002, 21, 3292; (b) G. Suss-Fink,
¨
E. G. Fidalgo, A. Neels and H. Stoeckli-Evans, J. Organomet.
Chem., 2000, 602, 188.
12 J. L. Vincent, S. Luo, B. L. Scott, R. Butcher, C. J. Unkefer,
´
C. J. Burns, G. J. Kubas, A. Lledos, F. Maseras and J. Tomas,
Organometallics, 2003, 22, 5307.
13 (a) L. Y. Y. Chan and W. A. G. Graham, Inorg. Chem., 1975, 14,
1778; (b) R. Ball and M. J. Bennett, Inorg. Chem., 1972, 11, 1806.
14 G. M. Sheldrick, SHELX97, University of Gottingen, Germany,
1997.
c
1032 Chem. Commun., 2011, 47, 1030–1032
This journal is The Royal Society of Chemistry 2011