The Journal of Organic Chemistry
Page 10 of 12
Damrauer, N. H. Exploiting Charge-Transfer States for Maxim-
izing Intersystem Crossing Yields in Organic Photoredox Cat-
alysts. J. Am. Chem. Soc. 2018, 140, 4778–4781.
K.; Fujimoto, A.; Fukuzumi, S. Visible-Light-Induced Oxygena-
tion of Benzene by the Triplet Excited State of 2,3-Dichloro-
5,6-Dicyano-p-benzoquinone. J. Am. Chem. Soc. 2013, 135,
5368–5371; (d) Margrey, K. A.; McManus, J. B.; Bonazzi, S.;
Zecri, F.; Nicewicz, D. A. Predictive Model for Site-Selective
Aryl and Heteroaryl C-H Functionalization via Organic Photo-
redox Catalysis. J. Am. Chem. Soc. 2017, 139, 11288–11299;
(e) Pitzer, L.; Sandfort, F.; Strieth-Kalthoff, F.; Glorius, F. Inter-
molecular Radical Addition to Carbonyls Enabled by Visible
Light Photoredox Initiated Hole Catalysis. J. Am. Chem. Soc.
2017, 139, 13652–13655; (f) Margrey, K. A.; Levens, A.; Nice-
wicz, D. A. Direct Aryl C-H Amination with Primary Amines us-
ing Organic Photoredox Catalysis. Angew. Chem. Int. Ed. 2017,
56, 15644–15648; (g) Niu, L.; Yi, H.; Wang, S.; Liu, T.; Liu, J.;
Lei, A. Photo-Induced Oxidant-Free ocidative C-H/N-H Cross-
Coupling between Arenes and Azoles. Nature Commun. 2017,
8, 14226.
1
2
3
4
5
6
7
8
[13] Shen, B.; Bedore, M. W.; Sniady, A.; Jamison, T. F. Continuous
Flow Photo-Catalysis Enhanced using an Aluminum Mirror:
Rapid and Selective Synthesis of 2’-Deoxy- and 2’,3’- Dideoxy-
nucleosides Chem. Commun. 2012, 48, 7444–7446.
[14] Saito, I.; Ikehira, H.; Kasatani, R.; Watanabe, M.; Matsuura, T.
Photoinduced Reactions. 167. Selective Deoxygenation of Sec-
ondary alcohols by Photosensitized Electron-Transfer Reac-
tion. A General Procedure for Deoxygenation of Ribonucleo-
sides. J. Am. Chem. Soc. 1986, 108, 3115–3117.
[15] (a) Mataga, N.; Kaifu, Y.; Koizumi, M. Solvent Effects upon Flu-
orescence Spectra and the Dipole Moments of Excited Mole-
cules. Bull. Chem. Soc. Jpn. 1956, 29, 465; (b) Lippert, E. Spec-
troscopic Determination of the Dipole Moment of Aromatic
Compounds in the First Excited Singlet State. Z. Elektrochem.
1957, 61, 962–975.
[16] The calculated S1 state shows that both dimethylamino
groups are almost co-planar to the carbazole plane, suggest-
ing that the excited state of CAR1 is of mesomeric intramolec-
ular CT (MICT) character rather than intramolecular twisted
CT (TICT). Dekhtyar, M.; Rettig, W.; Weigel, W. Mesomeric and
Twisted Intramolecular-Charge-Transfer States as a Key to
Polarity-Dependent Fluorescence of Donor-Acceptor-Substi-
tuted Aryl Pyrenes Chem. Phys. 2008, 344, 237–250.
[17] Heitele, H.; Finckh, P.; Weeren, S.; Pöllinger, F.; Michel-
Beyerle, M. E. Solvent Polarity Effects on Intramolecular Elec-
tron Transer. 1. Energetic Aspects. J. Phys. Chem. 1989, 93,
5173–5179. The electron transfer process from PC* to aryl
chlorides should be in the Marcus normal region because the
G is nearly zero. Solvation of the generated radical pair by a
polar solvent decreases G, which facilitates the electron
transfer process.
[18] The photons emitted by the light source were almost fully ab-
sorbed by the PC, even in the case of 1 mol% catalysis, given
the absorbance of 2.7 calculated based on the molar absorp-
tion coefficient ( = 2.04 103 L mol–1 cm–1 in DMA), path
length (at least 1.32 cm) and PC concentration (1.00 10–3
mol L–1 in case of 1 mol% catalysis).
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
[23] Shen, B.; Jamison, F. T. Continuous Flow Photochemistry for
the Rapid and Selective Synthesis of 2’-Deoxy and 2’,3’-Dide-
oxynucleosides. Aust. J. Chem. 2013, 66, 157–164.
[24] Yus, M.; Ortiz, R.; Huerta, F. F. Intramolecular Carbolithiation
Promoted by a DTBB-Catalyzed Chlorine-lithium Exchange.
Tetrahedron 2003. 59, 8525–8542.
[25] Gaussian 09, R. D., Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.;
Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Bar-
one, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato,
M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.;
Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.;
Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogli-
aro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.;
Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;
Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;
Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;
Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Sal-
vador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas,
Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian,
Inc., Wallingford CT, 2009.
[26] (a) Elvington, M. C.; Brewer, K. J. Electrochemistry In Applica-
tion of Physical Methods to Inorganic and Bioinorganic Chem-
istry; Scott, R. A.; Lukehart, C. M., Eds.; Wiley: Chichester,
2007; pp 17–38; (b) Gennett, T.; Milner, D. F.; Weaver, M. J. J.
Phys. Chem. Role of Solvent Reorganization Dynamics in Elec-
tron-Transfer Processes. Theory-Experiment Comparisons
for Electrochemical and Homogeneous Electron Exchange In-
volving Metallocene Redox Couples. 1985, 89, 2787–2794.
[27] Pan, X.; Lacôte, E.; Lalevée, J.; Curran, D. P. Polarity Reversal
Catalysis in Radical Reductions of Halides by N-Heterocyclic
Carbene Boranes. J. Am. Chem. Soc. 2012, 134, 5669–5674.
[28] Liu, Y. X.; Xue, D.; Wang, J. D.; Zhao, C. J.; Zou, Q. Z.; Wang, C.;
Xiao, J. Room-Temperature Arylation of Arenes and Het-
eroarenes with Diaryl-iodonium Salts by Photoredox Cataly-
sis. Synlett 2013, 24, 507–513.
[29] Trofimov, B. A.; Mikhaleva, A. I.; Ivanov, A. V.; Shcherbakova,
V. S. Expedient One-pot Synthesis of Pyrroles from Ketones,
Hydroxylamine, and 1,2-Dichloroethane. Tetrahedron 2015,
71, 124–128.
[30] Nadres, T. E.; Lazareva, A.; Daugulis, O. Palladium-Catalyzed
Indole, Pyrrole, and Furan Arylation by Aryl Chlorides. J. Org.
Chem. 2011, 76, 471–483.
[19] Moderate yields were due to the consumption of aryl radicals
by a competitive hydrogen abstraction (41% and 27% yields
of the reduced products were accompanied with 8m and 8n,
respectively). A hydrogen atom probably comes from ben-
zene Ar–H and the substrate’s benzylic methylene. Li reported
that the reaction of chlorobenzene with benzene gave bi-
phenyl in 35% yield (Figure 1B, ref 7b). Note that in their case
hydrogen atom abstraction from benzene by the phenyl radi-
cal does not lead to the loss of reactive species (the output is
the identical phenyl radical), and they reported this reaction
as a sole example using an aryl chloride as a substrate.
[20] The observation that reaction proceeds only upon constant ir-
radiation does not decisively rule out the possibility of radi-
cal-chain process. Cismesia, M. A.; Yoon, T. P. Characterizing
Chain Processes in Visible Light Photoredox Catalysis. Chem.
Sci. 2015, 6, 5426–5434.
[21] For the demanding substrates such as unactivated aryl chlo-
rides, judging from the Stern-Volmer plot that shows slow
electron transfer from CAR1*, the electron transfer from the
triplet excited CAR1 cannot be ruled out.
[22] In contrast, reactions based on the oxidation of demanding
substrates have been increasingly studied. Selected examples:
(a) Ohkubo, K.; Mizushima, K.; Iwata, R.; Fukuzumi, S. Selective
Photocatalytic Aerobic Bromination with Hydrogen Bromide
via an Electron-Transfer State of 9-Mesityl-10-methylacri-
dinium ion. Chem. Sci. 2011, 2, 715–722; (b) Ohkubo, K.; Ko-
bayashi, T.; Fukuzumi, S. Direct Oxygenation of Benzene to
Phenol using Quinolinium Ions as Homogeneous Photocata-
lysts. Angew. Chem. Int. Ed. 2011, 50, 8652–8655; (c) Ohkubo,
[31] Ghosh, I.; König, B. Chromoselective Photocatalysis: Con-
trolled Bond Activation through Light-Color Regulation of Re-
dox Potentials. Angew. Chem. Int. Ed. 2016, 55, 7676–7679.
[32] Hofmann, J.; Gans, E.; Clark, T.; Heinrich, M. R. Radical Aryla-
tion of Anilines and Pyrroles via Aryldiazotates. Chem. Eur. J.
2017, 23, 9647–9656.
ACS Paragon Plus Environment