March 2011
Green and Efficient Synthesis of Pyrazolo[3,4-b]quinolin-5-ones Derivatives by
Microwave-Assisted Multicomponent Reaction in Hot Water Medium
367
whose structure was proven by spectroscopic methods (1H
NMR, 13C NMR, and MS). The spectral and analytical data
were identical to previously published [13].
Scheme 2
REFERENCES AND NOTES
[1] (a) Lancaster, M. Green Chemistry: An Introductory Text;
Royal Society of Chemistry: Cambridge, 2002, p 1; (b) Doble, M.;
Kruthiventi, A. K. Green Chemistry and Engineering; Elsevier: Bur-
lengton, 2007, p 1.
CONCLUSION
Thus, the simple, efficient, and eco-friendly synthetic
method was developed for preparation of pyrazolo[3,4-b]qui-
nolin-5-ones by microwaves-assisted multicomponent heter-
ocyclization reaction of 5-aminopyrazoles, aromatic alde-
hydes, and dimedone in hot-water medium in the presence of
triethylamine. All target heterocyclic compounds were
obtained in good to excellent yields and purity of >95%.
[2] (a) Anastas, P. T.; Warner, J. C. Green Chemistry: Theory
and Practice; Oxford University Press: Oxford, 2000, p 1; (b) Tundo,
P.; Esposito, V. Green Chemical Reactions; Springer: Dordrecht, 2006, p 1.
¨
[3] (a) Lindstrom, U. M. Organic Reactions in Water: Princi-
ples, Strategies and Applications; Blackwell Publishing: Oxford, 2007,
p xiii; (b) Li, C.-J.; Chan, T.-H. Comprehensive Organic Rections in
Aqueous Media; Wiley-Interscience: New York, 2007,
Chanda, A.; Fokin, V. V. Chem Rev 2009, 109, 725.
p 1; (c)
[4] (a) Savage, P. E.; Akiya, N. Chem Rev 2002, 102, 2725;
(b) Siskin, M.; Katritzky, A. R. Chem Rev 2001, 101, 825.
EXPERIMENTAL
[5] (a) Grieco, P. A. Organic Synthesis in Water; Blackie: Lon-
don, 1998, p 1; (b) Narayan, S.; Muldoon, J.; Finn, M. G.; Fokin, V.
V.; Kolb, H. C.; Sharpless, K. B. Angew Chem Int Ed 2005, 44, 3275.
[6] (a) Dallinder, D.; Kappe, C. O. Chem Rev 2007, 107, 2563;
(b) Polshettiwar, V.; Varma, R. S. Chem Soc Rev 2008, 37, 1546.
[7] (a) Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter,
J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha,
J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Ander-
son, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C.
M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.;
Isakson, P. C. J Med Chem 1997, 40, 1347; (b) Terrett, N. K.; Bell,
A. S.; Brown, D.; Ellis, P. Bioorg Med Chem Lett 1996, 6, 1819; (c)
Elguero, J. In Comprehensive Heterocyclic Chemistry II; Katritzky, A.
R., Rees, C. W., Scriven, E. F. V., Eds., Pergamon Elsever Science:
Oxford, 1996; Vol.6, p 1; (d) Singh, S. K.; Reddy, P. G.; Rao, K. S.;
Lohray, B. B.; Misra, P.; Rajjak, S. A.; Rao, Y. K.; Venkatewarlu, A.
Bioorg Med Chem Lett 2004, 14, 499.
The near-critical water microwave-assisted experiments
were carried out in a MARS multimode reactor from CEM
Corporation (Matthews, NC) equipped with fiber-optic temper-
ature probe.
General procedure for the synthesis of 4a–u. Pyrazol-5-
amine 1a–c (1.0 mmol), aldehyde 2a–g (1.0 mmol), dimedone
3 (1.0 mmol), triethylamine (1.2 mmol), and 3 mL of water
were placed in 10 mL Xpress vial which then was capped.
The mixture was irradiated at 170ꢀC (375 W) for 10 min with
intensive magnetic stirring. After cooling to room temperature,
3 mL of EtOH-H2O mixture (1:1) was added to the crude reac-
tion mixture and stirred for 10 min. The precipitate was col-
lected by filtration, washed with EtOH–H2O (1:1), and dried
at room temperature to produce the desired pyrazoloquinoli-
none 4a–u. In all the cases, the reaction gave a single product
[8] (a) Tu, S.-J.; Zhang, H.-X.; Han, Z.-G.; Cao, X.-D.; Wu, S.-S.;
Yan, S.; Hao, W.-J.; Zhang, G.Ma, N. J Comb Chem 2009, 11, 428; (b)
Tu, S.-J.; Shao, Q.Zhou, D.; Cao, L.; Shi, F.; Li, C. J Heterocyclic Chem
2007, 44, 1401; (c) Shao, Q.; Tu, S.; Li, C.; Cao, L.; Zhou, D.; Wang, Q.;
Jiang, B.; Zhang, Y.; Hao, W. J Heterocyclic Chem 2008, 45, 411.
[9] (a) Molteni, V.; Hamilton, M. M.; Mao, L.; Crane, C. M.;
Termin, A. P.; Wilson, D. M. Synthesis 2002, 12, 1669; (b) Ferro, S.;
Rao, A.; Zappala, M.; Chimirri, A.; Barreca, M. L.; Witvrouw, M.;
Debyser, Z.; Monforte, P. Heterocycles 2004, 63, 2727.
Table 3
Synthesis of compounds 4a-u.
Compound
R
R1
Yield (%)
4a
4b
4c
4d
4e
4f
4g
4h
4i
4j
4k
4l
4m
4n
4o
4p
4q
4r
4s
Ph
Ph
4-CH3OC6H4
4-CH3C6H4
4-BrC6H4
4-ClC6H4
4-C2H5OC6H4
Ph
3,4-(CH3O)2C6H3
4-CH3OC6H4
4-CH3C6H4
4-BrC6H4
4-ClC6H4
4-C2H5OC6H4
Ph
82
83
83
90
84
80
76
80
80
85
86
86
82
74
86
86
86
82
77
75
77
Ph
Ph
[10] Polshettiwar, V.; Varma, R. S. Tetrahedron Lett 2007, 48, 7443.
[11] Peng, Y.; Song, G.; Dou, R. Green Chem 2006, 8, 573.
[12] (a) Terrett, N. K.; Bell, A. S.; Brown, D.; Ellis, P. Bioorg
Med Chem Lett 1996, 6, 1819; (b) Singh, S. K.; Rebby, P. G.; Rao,
K. S.; Lohray, B. B.; Misra, P.; Rajjak, S. A.; Rao, Y. K.; Venkate-
warlu, A. Bioorg Med Chem Lett 2004, 14, 499; (c) Penning, T. D.;
Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.;
Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R.
S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J.
N.; Gregory S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhui-
zen, A. W.; Zhang, Y. Y.; Isakson, P. C. J Med Chem 1997, 40, 1347.
[13] (a) Chebanov, V. A.; Saraev, V. E.; Desenko, S. M.; Cher-
nenko, V. N.; Knyazeva, I. V.; Groth, U.; Glasnov, T.; Kappe, C. O. J
Org Chem 2008, 73, 5110; (b) Chebanov, V. A.; Saraev, V. E.;
Desenko, S. M.; Chernenko, V. N.; Shishkina, S. V.; Shishkin, O. V.;
Kobzar, K. M.; Kappe, C. O. Org Lett 2007, 9, 1691; (c) Quiroga, J.;
Mejia, D.; Insuasty, B.; Abonia, R.; Nogueras, M.; Sanchez, A.; Cobo,
J.; Low, J. N. Tetrahedron 2001, 57, 6947.
Ph
Ph
Ph
4-CH3C6H4
4-CH3C6H4
4-CH3C6H4
4-CH3C6H4
4-CH3C6H4
4-CH3C6H4
4-CH3C6H4
CH3
3,4-(CH3O)2C6H3
4-CH3OC6H4
4-CH3C6H4
4-BrC6H4
CH3
CH3
CH3
CH3
4-ClC6H4
4-C2H5OC6H4
Ph
3,4-(CH3O)2C6H3
4t
4u
CH3
CH3
Journal of Heterocyclic Chemistry
DOI 10.1002/jhet