pubs.acs.org/joc
unusual processes, such as ene dimerizations,2 coupling
The Crossed [2þ2] Cycloaddition of
1-Phenylcyclopropene and 1-Bromo-2-
phenylcyclopropene
reactions,3 rearrangement,4 and [2þ2] cyclizations to release
strain energy.5 Cyclopropenes usually will isomerize, dimer-
ize, and/or react with other reagents to simultaneously form
products due to their highly strained energy.
Gon-Ann Lee,* Wen-Chieh Wang, Shih-Fen Jiang,
Chih-Yi Chang, and Ru-Ting Tsai
The control of the crossed reactions between two different
cyclopropenes is an important issue to expand their applica-
tions. In the literature, there are only a few crossed reactions
between two different cyclopropenes reported. Three types
of cyclopropenes, bicyclo[5.1.0]oct-1,8-ene,6 1-phenylcyclo-
propene,7 and 1-trimethylsilyl-3-phenylcyclopropene,8 un-
derwent ene trimerization, which was a type of crossed ene
reaction of a monomer and an ene dimer. We also found that
1-trimethylsilyl-2-phenylcyclopropene was tetramerized via
ene dimerizations to generate two different ene dimers, exo-
form and endo-form, followed by crossed coupling to give a
triene tetramer.9 There is only one designed crossed reaction
between two different cyclopropenes reported by Baird and
co-workers. They claimed that 3,3-dimethylcyclopropene-
carboxylic acid and 2-tert-butylcyclopropenecarboxylic acid
underwent a crossed ene reaction. This crossed ene reaction
Department of Chemistry, Fu Jen Catholic University,
Hsinchuang, Taipei 24205, Taiwan, Republic of China
Received July 27, 2009
(2) (a) Baird, M. S.; Hussein, H. H.; Clegg, W. J. Chem. Res., Miniprint
1988, 4, 1101–1113. (b) Wiberg, K. B.; Artis, D. R.; Bonneville, G. J. Am.
Chem. Soc. 1991, 113, 7969–7979. (c) Lee, G. A.; Shiau, C. S.; Chen, C. S.;
Chen, J. J. Org. Chem. 1995, 60, 3565–3567. (d) Chen, K. C.; Wang, W. C.;
Chen, M. Y.; Chen, W. C.; Her, M. C.; Lee, G. A. Eur. J. Org. Chem. 2007, 6,
953–958.
(3) (a) Baird, M. S.; Hussain, H. H. Tetrahedron 1989, 45, 6221–6238.
(b) Billups, W. E.; Luo, W.; Lee, G. A.; Chee, J.; Arney, B. E. Jr.; Wiberg,
K. B.; Artis, D. R. J. Org. Chem. 1996, 61, 764–770.
1-Bromo-2-phenylcyclopropene (2) underwent [2þ2] di-
merization to generate 1,2-dibromo-4,5-diphenyltri-
cyclo[3.1.0.02,4]hexane (5), which was heated to form
1,2-dibromo-4,5-diphenylcyclohexa-1,4-diene (6) fol-
lowed by oxidation to yield 40,50-dibromo-o-terphenyl
(7). o-Terphenyl 7 could be synthesized in one-pot reac-
tions from 1,1,2-tribromocyclopropane (3). When cyclo-
propane 3 was treated with 1.5 equiv of methyllithium
followed by slowly adding the proton source, crossed
[2þ2] adduct 8 was isolated in 40% yield. Compound 8
was heated and oxidated to produce 40-bromo-o-terphe-
nyl (11).
(4) (a) Pincock, J. A.; Boyd, R. J. Can. J. Chem. 1977, 55, 2482–2491.
€
(b) de Meijere, A.; Faber, D.; Heinecke, U.; Walsh, R.; Muller, T.; Apeloig,
Y. Eur. J. Org. Chem. 2001, 663–680. (c) Baird, M. S. Chem. Rev. 2003, 103,
1271–1294.
(5) (a) Baucom, K. B.; Butler, G. B. J. Org. Chem. 1972, 37, 1730–1732.
(b) Schipperijn, A. J.; Lukas, J. Tetrahedron Lett. 1972, 13, 231–232.
(c) Schipperijn, A. J.; Lukas, J. Recl. Trav. Chim. Pays-Bas 1973, 92, 572–
€
580. (d) Binger, P.; Schafer, H. Tetrahedron Lett. 1975, 16, 4673–4676.
(e) Nefedov, O. M.; Dolgii, I. E.; Bulusheva, E. V.; Shteinshneider, A. Y.
Izv. Akad. Nauk SSSR, Ser. Khim. 1976, 1901–1902. (f) Pincock, J. A.;
Moutsokapas, A. A. Can. J. Chem. 1977, 55, 979–985. (g) Butler, G. B.;
Herring, K. H.; Lewis, P. L.; Sharpe, V. V. III; Veazey, R. L. J. Org. Chem.
1977, 42, 679–682. (h) Nefedov, O. M.; Dolgii, I. E.; Bulusheva, E. V.;
Shteinshneider, A. Y. Izv. Akad. Nauk SSSR, Ser. Khim. 1979, 1535–1538.
(i) Padwa, A.; Pulwer, M. J. Chem. Soc., Chem. Commun. 1982, 783.
(j) Wiberg, K. B.; Bonneville, G. Tetrahedron Lett. 1982, 23, 5385–5388.
(k) Padwa, A.; Pulwer, M. J.; Rosenthal, R. J. J. Org. Chem. 1984, 49, 856–
862. (l) Billups, W. E.; Lin, L. J. Tetrahedron 1986, 42, 1575–1579. (m) Boger,
D. L.; Brotherton, C. E. J. Am. Chem. Soc. 1986, 108, 6695–6713. (n) Baird,
M. S.; Hussain, H. H. J. Chem. Soc., Perkin Trans. 1 1987, 1609–1612.
(o) Ivanov, A. L.; Domnin, I. N. Zh. Org. Khim. 1988, 24, 2547–2552.
(p) Padwa, A.; Austin, D. J.; Xu, S. L. Tetrahedron Lett. 1991, 32, 4103–4106.
(q) Shapiro, E. A.; Kalinin, A. V.; Ugrak, B. I.; Nefedov, O. M. J. Chem.
Soc., Perkin Trans. 2 1994, 709–713. (r) Al Dulayymi, A. R.; Baird, M. S.
Tetrahedron 1996, 52, 10955–10968. (s) Carbocyclic Three- and Four-Mem-
bered Ring Compounds. In Houben-Weyl, Methods of Organic Chemistry, 4th
ed.; de Meijere, A., Ed.; Thieme Verlag: Stuttgart, Germany, 1997; Vol. E17a. (t)
Arrowood, T. L.; Kass, S. R. Tetrahedron 1999, 55, 6739–6748. (u) Han, S.; Kass,
S. R. J. Chem. Soc., Perkin Trans. 1 1999, 1553–1558. (v) Klimova, T.; Klimava,
E. I.; Garcia, M. M.; Toledano, C. A.; Toscano, R. A.; Ramirez, L. R. Russ. Chem.
Bull., Int. Ed. 2000, 49, 2059–2064. (w) Smith, M. A.; Richey, H. G. Jr.
Organometallics 2007, 26, 609–616.
Cyclopropene has attracted the attention of both theore-
tical and experimental chemists because of its special place as
the simplest small ring cycloalkene.1 Consequently, the
chemistry of cyclopropenes is very rich, and contains many
(1) (a) Halton, B.; Banwell M. B. Cyclopropenes. In The Chemistry of the
Cyclopropyl Group; Rappoport, Z., Ed.; Wiley: New York, 1987; Chapter 21.
(b) Billups, W. E.; Haley, M. M.; Lee, G. A. Chem. Rev. 1989, 89, 1147–1159.
(c) Padwa, A.; Fryxell, G. E. Cyclization and Cycloaddition Reactions of
Cyclopropenes. In Advances in Strain in Organic Chemistry, ; Halton, B., Ed.;
Jai Press: Greenwich, CT, 1991; Vol. 1. (d) Rademacher, P. Chem. Rev. 2003, 103,
933–975. (e) Sheshenev, A. E.; Baird, M. S.; Croft, A. K.; Bolesov, I. G.
Mendeleev Commun. 2004, 299–301. (f) Walsh, R. Chem. Soc. Rev. 2005, 34,
714–732. (g) Rubin, M.; Rubina, M.; Gevorgyan, V. Synthesis 2006, 1221–1245.
(h) de Meijere, A.; Kozhushkov, S. I.; Schill, H. Chem. Rev. 2006, 106, 4926–
4996. (i) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117–
3179. (j) Marek, I.; Simaan, S.; Masarwa, A. Angew. Chem., Int. Ed. 2007, 46,
7364–7376. (k) Ashirov, R. V.; Shamov, G. A.; Lodochnikova, O. A.; Litvynov, I.
A.; Appolonova, S. A.; Plemenkov, V. V. J. Org. Chem. 2008, 73, 5985–5988.
(l) Su, M. D. J. Chem. Theory Comput. 2008, 4, 1263–1273.
(6) Billups, W. E.; Lee, G. A.; Arney, B. E. Jr.; Whitmire, K. H. J. Am.
Chem. Soc. 1991, 113, 7980–7984.
(7) Lee, G. A.; Chang, C. Y. J. Org, Chem. 2004, 69, 8949–8951.
(8) Sheshenev, A. E.; Baird, M. S.; Croft, A. K.; Starikova, Z. A.;
Shashkov, A. S.; Zhuze, A. L.; Bolesov, I. G. Tetrahedron Lett. 2006, 47,
2839–2843.
(9) Lee, G. A.; Chang, C. Y. Tetrahedron Lett. 1998, 39, 3013–3016.
7994 J. Org. Chem. 2009, 74, 7994–7997
Published on Web 09/17/2009
DOI: 10.1021/jo901636k
r
2009 American Chemical Society